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Abstract

Despite the wide availability of automated testing techniques such as fuzzing,
little attention has been devoted to testing computer architecture simulators.
We propose a fully automated approach for this task. Our approach uses large
language models (LLM) to generate input programs, including information about
their parameters and types, as test cases for the simulators. The LLM’s output
becomes the initial seed for an existing fuzzer, AFL++, which has been enhanced
with three mutation operators, targeting both the input binary program and its
parameters. We implement our approach in a tool called SearchSYS. We use it
to test the gemb system simulator. SearchSYS discovered 21 new bugs in gem5,
14 where gem5’s software prediction differs from the real behaviour on actual
hardware, and 7 where it crashed. New defects were uncovered with each of the
6 LLMs used.
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LLM, Tiny LLM, ANN, SBSE, SBFT, Genetic Improvement of Tests, gem5, LLM in
Software Engineering, TinyLlama, Phi2, Llama2, Magicoder, CodeBooga,
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1 Introduction

Testing plays a key role in software’s lifecycle. Today, test generation is often expen-
sive, tedious and labour-intensive. The task becomes even more difficult for emulators,
that simulate different hardware. Creating a test suite for system-level simulation soft-
ware is challenging. For example, gem5 [1] simulates software execution on different
architectures, either processor micro-architectures or system-level. Considering that
the set of test inputs for such a simulator is a combination of both the architecture
simulation and the program that runs within that simulation, the space of possible
inputs for testing is exponentially large.

Previously [2], we proposed a novel way of testing system simulator software. Our
differential testing [3] approach uses large language models (LLMs) to first generate a
set of initial programs, which are then compiled and fed through a fuzzer (a modified
version of AFL++, see Section 3.2). This allows us to generate a large set of software that
runs on specific hardware, as well as on a simulator that emulates the same computer
architecture. If the outputs differ, we have potentially found a bug in the given system
simulator (see Figure 2). Each mismatch is flagged for further investigation.

Here we extend our approach [2], to make it fully automated and provide a more
diverse set of test inputs, by: (1) generating new inputs directly via LLMs, including
extracting software arguments and their types; (2) using a new mutator to modify
software arguments’ data types (e.g., mutating 0: INT32 to 55:INT64); (3) improving
fuzzing throughput; and (4) conducting an empirical study to evaluate our approach
using 6 LLMs, with overall 70 different experimental combinations: 14 corpora and
5 configurations of SearchSYS. Our extended approach is presented in Figure 1.

We implemented our approach in a tool called SearchSYS and used it to test the
gem5 [1] software simulator. Overall, SearchSYS revealed 14 bugs that caused gem5 to
produce behaviour different from the one observed when the binary was run outside
of gemb, as well as 7 crashes. Bugs were discovered by SearchSYS, regardless of the
LLM used. They have all been reported to the developers.

To summarise, our contributions are:

1. A fully automated novel approach for testing software system simulators by
combining large language models with fuzzing.

2. A prototype implementation of our approach, named SearchSYS.

3. An extensive empirical study using SearchSYS to test the gemb5 system simula-
tor. The LLM-generated inputs led to the discovery of 369 issues — this number
increased to 101442 when the LLM-generated programs’ binaries and their argu-
ments were seeded to SearchSYS’s fuzzer. These findings reveal 14 new separate
behaviours that differ from running on native hardware and 7 new independent
crashes.

4. An investigation into the effect of 6 large language models and 5 SearchSYS
configurations on the effectiveness of SearchSYS.

Section 2 presents the background required to understand our contribution; Section 3
presents our approach for testing computer system simulator software. Section 4
presents the research questions we pose to evaluate our approach. Section 5 presents
our methodology to answer our research questions, while Section 6 presents our empir-
ical results, and Section 7 discusses them. We present a threats to validity section
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Fig. 2 Differential testing of system simulators involves the use of a mutated corpus of test
programs to identify discrepancies between the output generated by a software simulator and a
reference standard: direct execution.

addressing potential limitations of our findings in Section 8. Additionally, we provide
related work in Section 9 and overall conclusions in Section 10.
To facilitate the replicability of our study, we make our artifact freely available [4].

2 Background

Our approach to testing system simulators combines technologies from two disciplines:
search-based software testing, in the form of fuzzing, and generative Al in the form
of large language models. In this section, we describe these two technologies as well
as provide background on the application of our approach, i.e., detection of errors in
computer system simulators.

2.1 System Simulators and Silent Errors

Simulators are broadly categorised by the domain or type of systems to be simulated.
Here, we are interested in computer-system architecture simulators, such as gem5 [1].
These emulate software execution in specific architectures, e.g. for testing and verifying
software behaviour within these computers or operating systems even before they
physically exist.

Although gem5 is the system-under-test (SUT) in the evaluation, discussed further
in Section 5, our findings apply to computer-system architecture simulators in general.
For brevity throughout the rest of the paper, we use ‘simulator’ for the computer-
system architecture simulator and ‘binary’ for the input software it emulates.

In simulators, bugs manifest in various forms, including system hangs, crashes,
and discrepancies between simulation and native runs. Bugs encompass cases where



the native run terminates correctly, but the simulation crashes, and cases where the
simulator fails to replicate a crash in the native environment. Silent errors, or missim-
ulations, further complicate matters as they occur when a simulation runs without
overt errors but produces incorrect results silently. Silent errors are challenging to
detect because the correct result is commonly unknown, cf. the Oracle Problem [5].
To address this concern, we employ differential testing, using the native system as our
reference point to detect missimulations [3, 6].

2.2 Fuzzers

Fuzzing is a software testing technique that automatically generates test inputs, usu-
ally aiming to reveal crashes and/or increase code coverage of the software-under-test
(SUT).

We use the AFL++ fork [7] of the American Fuzzy Lop (AFL) fuzzer [8]. AFL++
instruments the SUT by compiling it with additional instructions for obtaining feed-
back about code coverage. When fuzzing, AFL++ takes an initial corpus of tests (known
as seeds) and the instrumented SUT. The fuzzer uses test coverage information in
the instrumented version® of the SUT to explore new inputs by executing the target
program with seeds and evaluating the coverage achieved. Subsequently, the fuzzer
applies diverse mutations to a queue of input seeds to discover new program execution
paths and thereby increase code coverage in the SUT. Inputs discovering new branch
transitions are added to the fuzzer’s queue until reaching the termination condition,
such as achieving the desired coverage or reaching a time limit. AFL is configurable
via its Python and C/C++ APIs?

Seeds are typically input data for the SUT. However, in the context of this work,
seeds represent a combination of executable binary program files and their arguments,
rather than plain input data, and the SUT is a simulator. We discuss in detail our
choice of seed representation for fuzzing simulators in Section 3.

2.3 Code Coverage

In testing, code coverage measures are used to approximate the portion of a program’s
code that is executed with given test inputs, such as line, function, or branch coverage.
In this work, during fuzzing and corpus minimisation, AFL++ and afl-cmin apply
"binned hitcounts", a simplified version to estimate branch (edge) coverage. We refer
the interested reader to the original work and recent analysis of AFL++ coverage [8, 9].
Outside the fuzzing campaign, we use line coverage, which measures the executed lines
of code during SUT execution to address the code coverage aspects of RQ1 and RQ4.
Line coverage is expressed as either an absolute value (e.g. 20 lines executed) or as a
percentage relative to a baseline or previous results (e.g. 5% increase over a baseline
of 20 lines). We use the former option in our evaluation, similar to [10, 11].

Instrumented gem5 code is automatically generated during compilation by using the GNU Compiler
Collection (GCC) gcov profiling tool https://gcc.gnu.org/onlinedocs/gce/geov/introduction-to-gcov.html.

Zhttps://aflplus.plus/docs/custom__mutators/, and environment variables®, which allow for customisa-
tion and tuning of its behaviour. We leverage these options to build SearchSYS.
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2.4 Artificial Intelligence: Large Language Models (LLMs)

Large language models (LLMs) are increasingly prevalent in artificial intelligence (AT)
research, e.g., to aid text generation, including the generation of source code. The
emergence of GPT models, based on transformers with attention mechanisms, has
been widely accepted, leading to the development of new models aiming to surpass
their capabilities. Among the most prominent GPT versions are GPT-3.5 [12], publicly
available through OpenAI’s framework, and GPT-4 [13], accessible via private subscrip-
tion. Recent large language models competing with OpenAI’s offerings at an industrial
level include Llama?2 [14], developed by Meta and currently available to the public,
and Bard (now renamed to Gemini) [15], owned by Google and accessible through
its framework. Additionally, various research communities have produced new open-
source text generation models, such as Dolphin and Mistral, which are available on
the HuggingFace platform [16].

Several LLMs have been recently published for the specific task of program source
code generation (aka Code LLMs [17]). These are based on general-purpose architec-
tures or similar training techniques. We evaluate several different LLMs. In addition
to ChatGPT-3.5, we use Phi2 [18] (from Microsoft, designed for software generation),
CodeLlama [19] (which is derived from Llama specifically for source code generation),
Magicoder [20] (which combines transformers and auto-encoders for code generation)
and CodeBooga. Notably, CodeBooga [21] demonstrates how novel techniques, like
BlockMerge Gradient, can amalgamate knowledge from different LLMs. Specifically,
CodeBooga combines Phind-CodeLlama-34B-v2 and WizardCoder-Python-34B-V1.0
(Phind-CodeLlama-34B-v2 outperformed GPT-4 in benchmark evaluations [22]). They
operate within the 01lama framework®, which helps to set them up and ensure they
run under standard conditions.

3 SearchSYS: Testing System Simulators

Our approach for testing simulators follows the next steps:

1. Test Input Generation First, we use an LLM to generate a set of programs. In
our previous work, we began by using existing programs. In this paper, we remove
the need for such examples (Section 3.1.2).

2. Coverage-Guided Mutation-Based Fuzz Testing A single test input for the
simulator is composed of an executable program binary file (--binary) and its argu-
ments (--options). We thus compile the LLM-generated programs and input them
into a fuzzer to generate diverse variants of our test inputs (Section 3.2).

3. Differential Testing Finally, we compare the result obtained from running our
test inputs through a simulator with the outcome of the actual test execution in a
native environment (Figure 2).

The following subsections detail each of the aforementioned steps of our approach.

3.1 LLM-based Test Inputs Generation

We create a corpus of parameterised test inputs. To execute a single test in the sim-
ulator under test, we need: the program binary to simulate; its arguments; and their

4https://ollama.com/
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v ¢ lm LLM-corpus—-generation/corpus/source/20000314-3.c L\T—\

s @@ -2,6 +2,7 @@
2 7] // Modification timestamp: 2023-08-10 16:18:25
3 3 // Original Source: https://github.com/1lvm/1lvm-test-suite/blob/main/MultiSource/Benchmarks/ASC_Sequoia/20000314-3.c
4 4
5 + #include <stdio.h>
5 6 #include <stdlib.h>
6 7
7 8 extern void abort(void);

v i 2mm  data/af1/00167.c (O

@e -1,4 +1,3 @@
1 -c
1 /7 Modification timestamp: 2023-08-04 14:29:42
3 2 // Original Source: https://github.com/c-testsuite/c-testsuite/blob/master/tests/single-exec/@0167.c

3
o @e -26,4 +25,3 @@ int main(int argc, char *argv(]) {

Fig. 3 A sample of the changes using our Bash scripts to fix minor errors of LLM-generated programs
as shown in SearchGEM5 [2]’s GitHub.

types (e.g. 32-bit int). We use LLMs to generate all components necessary for creating
a test input. The process includes the binary creation by compiling the test program
source code obtained from the LLM. Additionally, we prompt the LLM to provide a
file containing the test program source’s arguments and their types.

3.1.1 Generation via Test Program Sources

In our preliminary work [2] we generated parameterised test inputs from test suites
and tutorial C programs via LLMs.

We used a Bash script to amend minor errors, such as adding missing includes and
removing empty lines or free text at the start or end of C programs. For instance, in
Figure 3, we automatically fixed two programs; we inserted a missing stdio.h include
to the test input 20000314-3. c, while we removed a free text not in a comment from
the test input 00167.c.

We applied a few-shot prompting technique [23]. We had three prompts® to facili-
tate the LLM’s comprehension of the task: 1) a simple prompt that describes the task
using a small C code and a free text description; 2) a prompt that gives an example
of a good response; and 3) a prompt that gives an example of a wrong response with
a short explanation of what is not valid.

To enable this prompt to handle many programs simultaneously, we extended it
by appending the prompt with many programs as illustrated in Listing 1. While this
approach helps guide the LLM’s comprehension, it may also limit the diversity of the
responses generated, while also limiting the throughput of the generation due to the
large number of tokens required in the prompt.

"I will give you a set of N programs from source X, can you generate
a pair per program with an input sample and its type information for the
second program? These are the programs: (name: code, name: code,...)".

Listing 1 Prompt used for generating input samples and type information in [2].

5We use a prompt comprised of three components, an explanation of the task, a positive example,
and a negative example, see further details at https://github.com/karineek/SearchGEMS5/blob/main/
SSBSE-2023-Evaluation/ README.md


https://github.com/karineek/SearchGEM5/blob/main/SSBSE-2023-Evaluation/README.md
https://github.com/karineek/SearchGEM5/blob/main/SSBSE-2023-Evaluation/README.md

The GPT-3.5-turbo returned pairs of programs, consisting of the original C pro-
gram and its parameterised counterpart, plus, for each argument, an example of a
valid argument (input value) and its type (e.g. 5 INT32). (The original program is
for sanity checks and types are needed by the tool for input mutation.) The programs
produced by the LLM that have no arguments or fail to compile were deemed invalid®.

With this approach, we gained better control over test input generation by con-
straining the LLM to a predefined set of C programs. However, it yielded a low rate
of valid programs for fuzzing with AFL++. In Section 3 of [2] (our previous work), we
observed that GPT-3.5-turbo heavily relied on external program sources and required
additional adjustments such as our Bash script to prepare the final compiled program.

Zero-Shot Over Few-Shot: The change to zero-shot prompting in Section 3.1.2
improves efficiency, scalability, and diversity of the test input generation by remov-
ing the dependency on predefined examples and Bash script’s fixes and addressing
limitations of a few-shots’ time-consuming, semi-manual, and error-prone process.
This enables fully automated fuzzing, eliminating human involvement in seed genera-
tion and selection, which is crucial for large-scale, continuous testing without human
bottlenecks to achieve high throughput and test input diversity.

3.1.2 Zero-shot Prompting Test Input Generation

We apply zero-shot prompting for test input generation instead of a few-shots
approach as in our previous work [2] to address efficiency and scalability challenges
while enabling broader and more diverse test input generation.

We augment the prompts with four C language-related token categories instead
of relying on test suites and C programs. We use three types of tokens: (1) program
names from tutorials (e.g., “Hello World”), (2) compiler optimisations (e.g., “Dead
Code Elimination”) or components (e.g., “Handles Abstract Syntax Tree (AST)”),
and (3) phrases from the ISO’s C standard [24] (e.g., “asinh function”). Note that we
scan the last section of [24] into our generator to be able to generate these phrases.
A phrase can be initialised (first word, [24, page 490]).

SearchSYS starts with a single prompt setting the LLM role, outlining the task’s
context to generate the desired output using a similar prompt as in Section 3.1.1. How-
ever, we set the role once, rather than repeating this process every several prompts.
Additionally, we do not test if the model adheres to a specific input program nor give
examples of good and bad responses. Following this stage, the LLM is presented with
an automatically generated prompt with a subset of three tokens selected randomly.
Table 1 describes the three token types (Type Col.) across four C language-related
token categories (Category Col.) with a few examples (Example Col.).

Subsequently, we create random queries following a straightforward pattern, as
shown in Listing 2.

This process achieves fully automated test input generation. Figure 4 shows
a generated parameterised C program created using CodeBooga which includes
Vectorization, Frontend and signed type tokens, crafting the concrete prompt in

8In practice, we tried up to three times to fix them automatically, either using a Bash script for known
problems (e.g., missing includes) or by asking the GPT-3.5-turbo again.



Table 1 C Language-Related Token Categories for Filling Template Gaps in Listing 2.

ID Type Category #Tokens Examples

1 Token-1 Compiler Optimizations 26 "Scalar Optimizations", "Dead Code Elimina-
tion", "Constant Folding"

2 Token-2 Compiler Parts 36 "Frontend", "Sema", "Serialization", "Parse",
"Lex", "AST"

3 Token-3 Domain Problems 192 "C Program to Sort an Array using Merge

Sort", "Calendar Year in Different Formats",
"input includes several arguments"

"AND operators", "cimagl function", "EOF",
"locale", "pow", "SCNiMAX"

Compiler Standard

4 Token-3 1 Jices [24]

3480

"Coding task: give me a program in C with all includes. Input is taken via
argv only. Please return a program (C program) and a concrete example of
an input (BASH). The C program will be with code triggering " 4+ <Token—1>
+ "optimisations, covers this part of the compiler " 4+ <Token—2> 4+ ", and
exercises this idea in C: " + <Token—3> + ". To recap the code contains
these:" + <Token—1> + " and " + <Token—2> + " and " 4+ <Token—3>;

Listing 2 A template prompt for generating C test program source using random tokens from

Table 1.

"Coding task: give me a program in C with all includes. Input is taken via
argv only. Please return a program (C program) and a concrete example of
an input (BASH). The C program will be with code triggering Vectorization
optimisations, covers this part of the compiler Frontend, and exercises
this idea in C: signed type. To recap the code contains these
Vectorization, Frontend and signed type;"

Listing 3 A concrete prompt for generating C test program source using the tokens

"Vectorization," "Frontend," and "signed type".

1" c
2 #include <stdio.h>
3 #include <stdlib.h>

1 #include <immintrin.h> // include header for AVX intrinsics
5 int main(int argc, char xargv[]) {

6  if (argec !'= 2)

7 printf ("Usage: %s <integer>\n", argv[0]);

8 return -1;

9

10 int input = atoi(argv([1]);

11 // load input into vector register

12 __m256i vinput = _mm256_setl_epi32(input);

13 // square the integer using AVX instruction

14 __m256i vresult = _mm256_mullo_epi32(vinput, input);
15 int result[8];

16 // store vector register to memory

17 _mm256_storeu_si256 ((__m256i*)result, result);

18  printf ("Square of %d is: %d\n", input, result[0]);
19 return O;

20 }

21 ~°°

Fig. 4 C code generated by LLM CodeBooga and the concrete prompt in Listing 3. Note: the fron-
tend program takes inputs from user and send answer back to the user, the use of vector instructions,
e.g. _mm256_setl_epi32, and signed types, e.g. int input.

Listing 3. The test input, as before, includes: parameterised C programs, an example
of a valid argument (input value) and its type for each argument (e.g. 9:INT32). For
full details see our tool artifact”.

Thttps://zenodo.org/records/13450472
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This streamlined approach generates inputs at a significantly higher rate, com-
pared to previous work, in a way that does not depend on which LLM is used. It also
provides high-level control over test case generation of parameterised test inputs. In
Section 6.1, we evaluate the throughput of different LLMs, including GPT-3.5-turbo.
For brevity, we refer to Section 3.1.1’s approach as the Semi-manual Approach and
Section 3.1.2°s as the Template Prompt Approach throughout the rest of the paper.

3.2 Fuzzing

AFL++ operates by taking an initial set of files, each serving as an input to the software-
under-test (SUT) and instrumenting the SUT to measure test coverage. This section
describes our extension of AFL++, SearchSYS, for testing simulators with complex test
inputs, using a coverage-guided mutational approach. We further discuss applications
of SearchSYS to test a specific simulator, gem5, in Section 5.

We have extended AFL++ by writing our mutation operators and part of the muta-
tion strategy, although we still make use of AFL++’s coverage selection criteria. This
enables the selection of specific test inputs from the corpus and mutation of their
binary file, arguments, or types, based on the test coverage data collected by AFL++
for each test input. We do not use AFL++’s built-in mutation operations at all because
they are not suitable for fuzzing binary files and types. These operations often disrupt
the necessary structure required to create valid (or semi-valid) test inputs, resulting
in mostly broken and useless test inputs. Instead, we use AFL++’s custom mutators
feature to load and apply our own mutators.

In our previous work [2], we introduced SearchGEM5, an automated testing tech-
nique that combines LLMs with search-based testing for system simulator testing. We
used GPT-3.5-turbo for parameterised C program generation, and we discussed our
extension to any LLM model in Section 3.1. Here, we extend the search-based testing
aspect of [2], which only included diversifying the arguments’ values, the generation
of new test inputs via direct fuzzing of their executable program binary file, and the
selection of test inputs to be fuzzed based on coverage feedback.

To further enhance our approach, we have made some additional improvements:

e New Mutator Operator. We introduce a new mutator that varies the type of
arguments.

¢ Independent Mutators. We implement and load to AFL++ each mutator sep-
arately, allowing coverage feedback to influence the selection of test inputs, while
also allowing the use of different mutator operators from the three available ones,
thereby enhancing the search-based testing capability of SearchSYS.

e Improved Fuzzing Throughput. We improve fuzzing throughput by no longer
relying solely on AFL++’s filtering of test inputs. Instead, we save all test inputs
for later inspection®, including additional scripts for differential testing, similar to
the approach in Even-Mendoza et al. [10].

Next, we describe in detail each of these contributions.

8To clarify, we do not add the discarded test inputs back to the AFL++ queue as we aim to keep the
queue minimal. Instead, we store them in a separate folder called "POST-AFL". After AFL++ fuzzing ends,
we perform differential testing on these discarded test inputs, as shown in Figure 2.



3.2.1 Custom AFL++ Mutation Operators

While bit-flip mutation is a standard feature in AFL++, its application must consider
the context. Introducing mutations that result in binaries being unable to load or
execute a single instruction leads to inefficient testing of the SUT, making it unlikely
that developers will be prepared to spend effort on bug identification or bug fixing®.
Consequently, we implement a new bit-flip mutation operator that controls the number
of bit-flips and frequency of application while limiting it to a program’s compiled
binary file. We do not apply bit-flip to arguments or type information to preserve the
structure of the test input. In Section 7.1, we analyse a fuzzed test input where a
bit-flip modifies a pointer value (address) without impacting instruction validity, an
unlikely outcome using the standard AFL++ bit-flip operator. This modification caused
a mismatch between gemb5 and the simulated architecture.

We have introduced three mutation operators of a test input for testing system
simulators: 1) bit-flip operator to edit a program’s compiled binary file, 2) a range-
enhanced operator to edit argument values within their specified type range and 3) an
operator to edit the value’s type. Operator (2) uses type information to ensure that
the arguments remain valid. In contrast, operator (3) mutates the type itself, such as
changing from INT32 to LONG, at random, which can potentially expose memory safety
issues in the SUT. We currently support all integer types, floating-point numbers,
doubles, and strings. However, we have not yet implemented support for pointers.
Figure 5 and Figure 6 show examples of arguments’ value (operator (2)) and type
mutations (operator (3)), respectively.

1 ./mutator_args.so test.o, 1:INT, 2:LONG, "Hello":STRING
2 After Mutation: test.o, 10:INT, 2:LONG, "universe":STRING

Fig. 5 Example of mutation operator (2) changing two argument values: first argument
changes from 1 to 10, and third argument from "Hello" to "universe".

1 ./mutator_types.so test.o, 1:INT, 2:LONG, "Hello":STRING
2 After Mutation: test.o, 1:LONG, "2":STRING, "Hello":STRING

Fig. 6 Example of mutation operator (3), which changes the first argument’s type from INT
to LONG and the second argument’s type from LONG to STRING.

We load all three mutators (1-3) using the AFL++ option, allowing AFL++’s heuris-
tics to select the next mutation operator. However, we intervene by decreasing the
probability of choosing (2), as AFL++ favours this operator due to its low risk of failing,
which is too conservative for a fuzzing approach.

SearchSYS implements the extension to AFL++. It evaluates new test inputs in the
form of binary name, arguments list, types. SearchSYS then uses this informa-
tion to carry out our mutation operators either directly to the compiled binaries or
to their arguments.

9For instance, binaries failing (either native or inside the simulator) with "error while loading shared
libraries: unsupported version 0 of Verneed record" due to odd bit-flips, will unlikely result in any fix
from the developer, as it is the correct behaviour (faulty binaries must crash).

10



3.2.2 Fuzzing Throughput Improvements

AFL++ discards test inputs (1) that exhibit no crash or hang and (2) do not contribute
to coverage. However, such inputs can still uncover missimulation in the system sim-
ulator under test, thus removing them from the queue degrades SearchSYS’s ability
to detect missimulations.

We incorporate the following idea in SearchSYS: fuzzing and differential testing
are carried out separately, similar to the approach by Even-Mendoza et al. [10]. Con-
sequently, we save these fuzzed test inputs for later examination. After fuzzing, we
employ differential testing, between running directly on x86 hardware (i.e., native)
and being run by the simulator. In Section 6, we analyse the efficiency of this idea in
terms of bug finding and coverage.

Another factor reducing fuzzing throughput is related to how many mutation oper-
ations AFL++ performs in a single fuzzing iteration. AFL++’s afl_custom_fuzz_count
parameter controls the number of times a test input should be mutated and exe-
cuted against the target. The iteration fails if any attempt to mutate the test input is
unsuccessful, and the resultant fuzzed test input is then discarded. An attempt using
Operator (1) (bit-flip) is more likely to fail than Operator (2) or Operator (3) because
it involves modifying a compiled binary file.

We customise the afl_custom_fuzz_count to control the number of mutation
attempts per iteration. A lower value reduces the likelihood of an iteration failing.
A too-low value leads to inefficient fuzzed input generation due to the overhead each
iteration introduces.

Note that afl_custom_fuzz_count is a hyperparameter of AFL++, not SearchSYS.
In Section 6, we investigate the optimal value of afl_custom_fuzz_count in the con-
text of system simulator fuzzing, measuring the improvement in throughput, coverage,
and bug-finding.

4 Research Questions

Next, we state our research questions, which guide our SearchSYS evaluation.

To assess the reliability of LLMs as a source of test inputs for a system simulator,
when given the prescribed test framework (as outlined in Section 3), our objective is
to evaluate:

RQ1: To what extent can different LLMs effectively generate parameterised C programs
for testing system simulators that adhere to the specified requirements?

During the test generation process, LLMs may generate similar test cases or test
cases that do not increase code coverage. Considering that this negatively impact the
fuzzer’s performance, we minimise the test suite size through a test selection process.
This also allows us to evaluate:

RQ2: What is the level of test case redundancy related to branch coverage in the test
suite generated by the LLMs?

Does fuzzing (concretely with AFL++) enhance the basic test coverage achieved by
LLM-generated test suites in a system simulator, after obtaining a minimised test

11



suite? Which LLMs perform best in achieving high coverage with AFL++ diversifica-
tion? Considering that the search space of every possible binary program and input
for a system is vast, we adapted AFL++ to construct SearchSYS (Section 3).

SearchSYS has parameters that affect the fuzzing process. These can be encoded
into different configuration files for SearchSYS (Section 6.3). We randomly generated
30 settings files. Consequently, we ask:

RQ3: What are the most suitable parameters for running SearchSYS?

Are there any customisations which have a particularly positive effect? Since fuzzing
is non-deterministic, how significant is the impact of the parameter configuration,
particularly when combined with our custom mutators, on the use of our approach
in practice? Furthermore, we aim to quantify the impact of our AFL++’s
customisation, as outlined in Section 3.2. Beyond the technical aspects of AFL++’s
ability to instrument and fuzz system simulators, we ask:

RQ4: How significantly does our customisation enhance SearchSYS’s efficacy in bug finding
and coverage improvement?

5 Methodology

Here, we present our methodology to answer our research questions.

5.1 gemb Use Case

Our case study, conducted during the evaluation phase of our research, focused on the
instrumentation, testing, and examination of the Instruction Set Architecture (ISA)
x86 part of gemb. gemb is an open-source simulator widely used in both academia
and industry. To facilitate search-based fuzz testing, we had to instrument gemb
and address potential performance overheads and scalability issues that arise when
simulating large-scale computer systems.

5.1.1 Logic Circuit Simulator

gem5'? is a state-of-the-art discrete time simulator for logic circuits. It is commonly

used to test the logic design of new electronic components, such as memory cache
systems, field-programmable gate arrays (FPGAs), and even CPUs. gem5 is a large
open-source project hosted on GitHub, with a primary coding language being C++
and Python. We use the version provided in the 2023 SSBSE Challenge Track'!. It
is based on gemb staging branch v23.0, but incorporates the latest gemb features and
improvements into a stable release. The tool also includes objects, shared libraries and
images, occupying over 28 GB of memory. It consists of ~ 1.34 million lines of code,
with more than a million lines written in C++. gem5 is controlled by a Python script,
specified via its command line, which determines, for example, the size and type of
memory the simulated binary can read and write to.

To facilitate comparison with our previous work [2], we employ the same mod-
ified version of an example file provided by the SSBSE Challenge Track 2023

Ohttps://www.gemb.org
Hhttps://github.com/BobbyRBruce/gem5-ssbse-challenge-2023 with git commit: 65edbe0, Jul 14, 2023.
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Table 2 Language Models for LLM-based Input Generation Phase. Type: C (code model), G
(general-purpose model), L (local model), LLM (large language model), SLM (small language
model). Methods applied to create the corpus: Prog. Src. (Input corpus generation via test
program sources, Section 3.1.1), Zero-shot (zero-shot prompting, Section 3.1.2), Corpus Min.
(corpus minimisation with AFL++-cmin).

Model Type Size Version Test Input Generation Methods
TinyLlama SLM,L 637 MB Git commit 2644915 Zero-shot, Corpus Min.
Phi2 SLM,L 1.6 GB Git commit e2£d632 Zero-shot, Corpus Min.
Llama2 L,G 3.8 GB Git commit 78e2641 Zero-shot, Corpus Min.
Magicoder L,C 3.8 GB  Git commit 8007de0 Zero-shot, Corpus Min.
CodeBooga L,C 19.0 GB Git commit 05b83c5 Zero-shot, Corpus Min.
GPT-3.5-turbo LLM,G NA  ChatGPT (Feb. 11, 2024) Zero-shot, Corpus Min.

GPT-3.5-turbo

(SSBSE 2023) LLM,G NA  ChatGPT (Aug. 3, 2023) Prog. Src., Corpus Min.

organisers, i.e., hello-custom-binary.py, which we adapted to accommodate the
specific requirements for SearchSYS’s test inputs, including file usage and additional
parameters.

5.1.2 Instrumentation and AFL++ Setup

During fuzzing with AFL++, to ensure consistent execution of test inputs, a Python
script is used to communicate between AFL++ and gem5.!? We use SCons ver-
sion v4.4.0 and the AFL++ fork [7] of the American Fuzzy Lop (AFL) fuzzer [§],
version afl-fuzz++4.08c, GitHub commit £596a297. SearchSYS employed AFL++
as the search engine, using its default parameters, except for two custom set-
tings: the AFL++’s map size was set to 1200000, with a time limit of 99 seconds
and memory limit of 50000 megabytes per test case execution. We customised
the functions afl_custom_init, afl_custom_deinit, afl_custom_fuzz_count and
afl_custom_fuzz to implement the customisations described in Section 3.2. To fur-
ther diversify the test inputs, we set AFL_SHUFFLE_QUEUE to 1. The full AFL++’s setup
is described in SearchSYS’s artifact [4].

5.2 Selected LLMs

We selected ollama models based on their diversity, covering both general-purpose and
code models, as well as a range of sizes determined by the number of Artificial Neural
Networks (ANNs) parameters. The number of ANN parameters typically indicates
the complexity and size of the neural network model. In LLMs, the model’s size is
correlated with the number of parameters, including weights and biases in the neural
network architecture.

We explore how model size impacts fuzzing outputs by examining a new type of
language model called small language models (SLM), also known as Tiny LLMs [25]*3.
These models are smaller versions of LLMs, typically with parameter counts signif-
icantly smaller than standard LLMs. We employ two SLMs, TinyLlama-1.1B and

12This script is available in our replication package [4].

13We acknowledge the potential confusion between LLM and Tiny LLM (or SLM). However, “Tiny LLM”
is a recognised terminology within the specific domain of LLMs. Consequently, unless otherwise specified,
we refer to all types of language models as LLMs for clarity.
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Phi2, to assess the influence of model size on our fuzzing methodology in our evalua-
tion. TinyLlama-1.1B is a general-purpose 1.1x 10° (1.1B) parameter language model,
pre-trained on approximately 1 trillion tokens [26]. Phi2 is a 2.7x10% (2.7B) parameter
language model designed for question answering, chat, and code generation [18].

We employed 6 language models listed in Table 2, along with a version of
GPT-3.5-turbo previously used in our work [2]. To address RQ2, we applied AFL++’s
corpus minimisation (afl-cmin), which reduces the number of test cases it uses based
on previously covered transitions. This allowed us to compare fuzzing performance and
behaviour across different LLMs and methods. We generated a total of 2x7 = 14 input
corpora, with two variants per LLM: one containing corpus minimisation (afl-cmin)
and the other without. Subsequently, we compared the reduced and original test
suites. To distinguish between these corpora, we have assigned them different names,
for example, Phi2 and Phi2-cmin.

5.3 Configurations

We consider 5 configurations in our evaluation when fuzzing:

1. SearchSYS. As introduced in this paper (with all improvements).

2. Throughput Improvement by Keeping all Fuzzed Inputs. We adapt
SearchSYS to operate solely with the first throughput improvement option, as
described in Section 3.2, namely fuzzing by proxy.

3. Throughput Improvement with Optimising afl_custom_fuzz_count. We
adapt SearchSYS to operate solely with the second throughput improvement
option, as described in Section 3.2, namely overriding AFL++ custom function
afl_custom_fuzz_count.

4. No Throughput Improvement. We adapt SearchSYS to operate without any
throughput improvement options.

5. SearchGEM5-SSBSE-2023. SearchGEM5 as in our previous work [2].

We use these configurations to assess the impact of each customisation.

Besides comparing with SearchGEM5 (Configuration 5), we have constructed
weaker versions of SearchSYS. Configurations 2-4 incorporate the type mutator and
enable loading each mutator into AFL++ separately. However, these configurations dif-
fer in their throughput improvement options. Configurations 2-3 exclude one option
each: Configuration 2 employs fuzzing by proxy, saving all test inputs for later review,
while Configuration 3 overrides the custom function afl_custom_fuzz_count.
Configuration 4 includes none. In contrast, Configuration 1 includes all three
customisations. This allowed us to isolate and evaluate the impact of each addition in
SearchSYS relative to the baseline, Sear chGEM5.

5.4 Experimental Procedure

The complete flow of the experimental procedure is illustrated in Figure 7.

For RQ1, we generated the input corpora running LLM-based input generation
for 25 hours. We set the timeout per query (or prompt) to be 100 seconds. This
decision dictated our selection of LLM models for test input generation, as models
consistently reaching the timeout limit are unsuitable for the auto-generation task
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[ 7 corpora were generated by LLMs
LLM Data Generation - Generation was performed for 25 hours each.

- Total generation time: 175 hours. (7x25 hours)
Bug Investigation RQ1 - Data analysis: all sets.
Coverage and LLM data: RQ1

Throughput Analysis — Analysed all sets (100% of the data).
- The data required semi-manual bug analysis when
7 corpora simulation output differed from x86 execution.

Analysis of Initial /_ - 7 sets were gna]ysed by AFL-cmin utility
Corpora - Data analysis: all sets.

AFL++’s Parameter
Selection
- 700 sets were generated by fuzzing 14 input corpora (7 initial, 7 minimised).
- Fuzzing was performed for 24 hours each, across 5 configurations.
- Each combination (corpus x configuration) was repeated 10 times.
- Total fuzzing time: 16,800 hours. (14x24x5x10 hours)

- Results were aggregated by input corpus and configuration.
- This produced 70 groups of data.
- Results for each group were calculated as averages of 10 repeats.

Fuzzed data: RQ4,

- Analysed data from a set per each of the 70 groups.

- Selection: set-10 was chosen (100% of set-10 analysed).
- The data required semi-manual bug analysis when

Coverage and simulation output differed from x86 execution.

Throughput Analysis ERelllvestization

RQ4 [OGPu [OCPU (X86 and/or Simulation)

Fig. 7 Overview of the experimental procedure.

(Note about RQ4 Bug Investigation — Set 10: day_to_analyse = uniform_random_Int([1,
10]), yielded day_to_analyse = 10. We used 100% of Day 10 data to construct Table 7 and
Table 8. The data is archived as set-10.zip in our Zenodo record.)

due to their expected low throughput rate. For RQ2, we applied corpus minimisation
using afl-cmin of AFL++. This part is illustrated as the pre-fuzzing stage in Figure 1.

For RQ3, we generated 30 sets of numbers, each containing three randomly selected
values between 1 and 100 (i.e. randomly and uniformly over integers between 1 to 100),
representing different parameter options for SearchSYS that affect the fuzzing process.
This triplet format corresponds to the value of afl_custom_fuzz_count per each of
the three mutators in Section 3.2. Each triplet is stored in a separate settings file,
resulting in 30 files being used in our evaluation. RQ3 aims to select a single settings
file for use in Configuration 1 and 3 during fuzzing (RQ4).

Finally, for RQ4, where we generate the final fuzzed corpus, we fuzzed each combi-
nation of input corpus (with and without minimisation) and configuration for 24 hours.
This process was repeated 10 times to obtain more accurate results [27]. We ran a total
of 70 combinations: 14 different input corpora and 5 configurations. Our evaluation
presents results at the granularity of each combination, averaging the 10 repetitions
for each combination. Overall, a total of 700 of 24-hour runs were performed. This
part is illustrated as the fuzzing + genetic algorithm (GA) engine part in Figure 1.
We note that AFL++ uses a GA internally.

To explore the bug detection capabilities of the generated test inputs, we
applied differential testing, post-fuzzing. An overview of our post-fuzzing experiment
procedure is illustrated in Figure 2.
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Table 3 Computer hardware and software used during evaluation stages.

Experiment GPU? Computer Specification
LLM-based Input Generation Yes Ubuntu Server 20.04.1 LTS , 256 GB RAM, NVIDIA A30
Local s Tensor GPU of 24 GB, 80 logical CPUs
LLM-based Input Generation | Ubuntu 22.04.4 LTS , 32 GB RAM, i7-1185G7
Remote as Service

. Red Hat 8.5.0-20, 256 GB RAM, NVIDIA A30 Tensor GPU
Fuzzing & Coverage Yes

of 24 GB, Intel Xeon Silver 4316 CPU with 80 logical CPUs

5.5 Experimental Environment

We used different machines for our evaluation, some equipped with GPUs and others
with only CPUs (x86_64), listed in Table 3.

LLM-based Input Generation. The GPT-3.5-turbo-based generation used GPUs
on servers running in data centres managed by OpenAI. For the rest of the language
models, we implemented a small driver written in Java, querying 0llama models
using the 01lama4j infrastructure!*. We used Ollama version 0.1.22 and Ollama4j
version 1.0.44. The timeout per query was 100 seconds. We ran the LLM-based input
generation method on the machines listed in Table 3, rows 1-2 for 011ama models and
GPT-3.5-turbo, respectively.

Fuzzing and Coverage. We fuzzed gem5 using Docker with Debian-12 containers
emulated with Podman (v4.6.1), using the machine specification in row 3 of Table 3,
including running AFL++ for the corpus minimisation and parameter selection. To
answer our research questions (e.g. RQ4 setting), we ran 70 docker containers in
parallel for the fuzzing campaigns, each of which was a different combination of con-
figuration and input corpus (5x14) for 10 days by leveraging the configuration option
AFL_NO_AFFINITY=1 from AFL++ to run the system in multiple cores. It attached a
container per processor, keeping 10 processors for the host’s other tasks. The experi-
ments did not consume more than 130GB of RAM in total. The SUT was instrumented
and compiled with afl-cc, GCC-11 and the default settings of gem5. The binary files
of test inputs were compiled with GCC-11 and -03. We measured the coverage of the
input and fuzzed corpora with gcov. We built gemb with g++ 11 -01 and gcov, adding
gcov instrumentation overheads!'®. We measured a smaller part of the gem5 codebase,
i.e. that is relevant only to x86. We used the gcov-based tool gfauto [28] to generate
the coverage results in a human-readable format for 3370 files in the gem5 codebase
(including header and system header files).

6 Results

We evaluated SearchSYS on its test generation capabilities, coverage, bug finding, and
the efforts required to reproduce the results. We provided further details about the
discovered bugs online at [4].

14https://amithkoujalgi.github.io/ollamaélj/
15gcov is part of the GNU Compiler Collection, see https://gce.gnu.org/onlinedocs/gec/Geov.html for
further details.
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Fig. 8 Number of (unique) gem5 test inputs generated with different language models during
25 hours. The LLM models are ordered by the number of ANN parameters from tiny to large (by
today’s standards). Note that GPT3 LLM was run on OpenAI’s cloud servers whilst the other LLMs
were run locally on our A30 Tensor GPU 80-core server.

6.1 RQ1: LLM Test Input Generation Effectiveness

To evaluate the suitability of LLMs as sources of inputs for fuzzing system simulators,
we conducted 25-hour runs with different LLM models. We assessed the effectiveness
of our LLM-based Test Inputs Generation on 6 different language models (Section 5.2).
We examined the test input throughput, coverage, and the capability to discover
new bugs in the system under test (SUT). Data was collected from 6 LLMs, each
generated through 25 hours of test input generation using LLMs. The initial corpus
GPT-3.5-turbo (SSBSE 2023) is taken from [2].

Programs Extraction Process. Large models tend to generate proper code (i.e.
complete programs) while smaller models often produce responses that are neither
valid programs nor demonstrate a clear understanding of the question. Consequently,
LLM test program generation does not follow the assumption of “one prompt equals
one program”. When LLMs generate an output, it can be either proper code or plain
text. If the output contains code, we extract the full program and classify it as a
test program—this contributes to the "Generated Test Inputs" count. If the output
contains no code at all, we discard it and do not count it toward any totals. Hence,
for the reported statistics, we consider an output successful if it contains a program,
although this does not guarantee that the program compiles. The programs that
compile are labelled “Compilation OK” programs. The statistics first indicate the
number of programs generated by the LLMs, followed by the number of those that
were compile successfully. We further discuss it next.

Throughput. Figure 8 shows the throughput of our LLM-based test input generation
approaches within 25 hours, grouped by the LLM. The solid black, grey/light-grey
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stripes and grey/white stripes, represent the total number of generated test inputs,
the number of test inputs that were compiled, and the number of non-crashing and
non-hanging test inputs, respectively. The bold numbers above each bar represent
Y-axis values stated explicitly for clarity. For example (see right end of Figure 8),
in 25 hours GPT-3.5-turbo (SSBSE 2023) generated 1869 C parameterised
files: 1086 compiled with GCC-11 -03, out of which 823 led to a non-crashing binary,
potentially suitable for fuzzing with AFL++. These form a valid set of LLM-generated
test binaries for AFL++ (grey/white stripes bar).

In Figure 8, the largest set is the GPT-3.5-turbo, followed by Magicoder. Llama?2
and CodeBooga come next, with relatively similar population sizes (after filtering
invalid inputs). This suggests that when model outputs compiled successfully, it was
often a good indication that these input tests, used as seeds, ran without crashing or
hanging. The SLMs (TinyLlama and Phi2) generated the smallest sets. The choice
of a specific LLM was usually more crucial than its purpose (code or general) or size
(e.g. CodeBooga vs Magicoder in Figure 8). However, SLMs had significantly lower
throughput, suggesting that the model’s size affected the generation rate. This is likely
because smaller models tend to generate a higher proportion of low-quality, non-code
answers, reducing the number of responses that qualified as test inputs; moreover,
their generated code was less likely to pass compilation. Notably, GPT-3.5-turbo
(SSBSE 2023) demonstrated poorer throughput than GPT-3.5-turbo, implying that
the zero-shot prompting approach was more efficient in terms of throughput.

For AFL++ fuzzing, only non-crashing and non-hanging instances can be used as
seeds due to its limitations (its heuristics are likely to classify these as ignored seeds).
However, for testing (RQ1), we used all “Compiled OK Test Inputs” (grey/light-grey
stripes) because crashing inputs can still reveal bugs'® (e.g. the simulator crashes with
a successful native run).

Next, we discuss the coverage and testing with LLM-generated inputs pre-fuzzing
results, using "Compiled OK Test Inputs".

Coverage. We used distinct binaries compiled from the programs of the LLM-
generated test inputs for coverage measurements of this part. The line coverage results
were as follows: TinyLlama: 35964; Phi2: 37124; GPT-3.5-turbo (SSBSE 2023): 40876;
Llama2: 41667; CodeBooga: 42563; Magicoder: 44418; and GPT-3.5-turbo: 44781. We
used the raw coverage data of each set presented above, for further analysis of the
initial corpus in Section 6.2.

GPT-3.5-turbo achieved the highest coverage (it also had far higher throughput
than any other 01lama models). It was expected because the model ran on a much
more powerful platform compared to our local GPU machine. The smaller LLMs,
Phi2 and TinyLlama had the lowest coverage, which aligned with expectations given
their size and capabilities.

Magicoder, although smaller in size (3.8 GB), surprisingly outperformed
CodeBooga (19 GB). This unexpected result highlights Magicoder’s efficiency in
generating valid and compilable code. The other models performed as anticipated

16We did not use the “Generated Test Inputs” set for testing evaluation (solid black bar), which also
contains non-compilable test inputs beyond what the "Compiled OK Test Inputs" set includes, since these
test inputs do not result in a binary, and a simulator requires a binary as input.

18



based on their specifications. Yet, notably, all three medium models (Magicoder,
CodeBooga, Llama2) achieved higher coverage than GPT-3.5-turbo (SSBSE 2023).
GPT-3.5-turbo (SSBSE 2023)’s reliance on test program sources restricted the
programs it could have generated and thus the coverage it achieved.

Bugs. We tested cases where the simulation and native-run disagreed deterministi-
cally (the same simulation ran twice on the same test input returned the same result,
the C program is UB-free, etc), with a 50-second timeout and up to 10 lines of stan-
dard output in a native run. This strategy identified bugs where the native run crashed
or hung while the simulation ran correctly and vice versa, or mismatches. Cases in
which both simulation and native run resulted in a crash or a hang were excluded!”.
Each bug was manually investigated and categorised.

Table 4 - Bugs Classification: Table 4 presents the bugs identified in our investi-
gation, excluding instances where the native run finished within 50 seconds but the
simulation did not, or failures only in native'® . However, we recorded timeouts
as follows: 1 test input each for TinyLlama and Phi2, and 3, 16 and 10 test inputs
for Llama2, CodeBooga, and GPT-3.5-turbo, respectively. Table 4 includes the bug
type (“Bug”), the bug description, and columns A to F, which represent the num-
ber of test inputs per bug found by each model (A: TinyLlama, B: Phi2, C: Llama2,
D: Magicoder, E: CodeBooga, and F: GPT-3.5-turbo). We found no new bugs with
GPT-3.5-turbo (SSBSE-2023) and hence excluded it from the table.

In total, we found 1 segmentation fault, 6 panic errors, and 14 mismatches, some
were related to unimplemented instructions in the simulation, as classified in Table 4.
The highest number of bugs were identified by GPT-3.5-turbo (17), followed by
CodeBooga (14) and Magicoder (11). Llama2 (10), Phi2 (6) and TinyLlama (4), iden-
tified a lower number of bugs, focusing mainly on panic errors. We reported bugs #7,
#16, #17, #18 and #20 in Table 4 to gem5 issues. Bug #7 involved the incorrect
simulation of two numbers’ subtraction, likely related to the long double type’s imple-
mentation in the simulator (see report number #1227). Bugs #16, #17, #18 and #20
were panic error crashes of gemb when simulating an invalid binary, that is, instead
of indicating a crash in the simulated binary, the whole system crashed (see report
numbers: #1507, #1483, #1506 and #1508, respectively. In addition, three bugs were
fixed between two versions tested as reported in Table 4 (bugs #13, #14 and #19).

These bugs were reported after several discussions with the developers. They
noted that the panic error is particularly interesting (e.g. gem5 developers meeting -
August 2024). We consider reporting the remaining bugs after clarifying the develop-
ers’ requirements, as discussed in Section 7. For example, bug #2 (system(command)
unimplemented) might be a known issue, and it raises the question of whether to
report it as a bug or as an additional test for the gem5 test suite.

1"When the native run and simulation hang or crash, the issue likely lies in the code, not the simulator.

18Manually investigating a smaller sample: we observed that most cases where the failure occurs in the
native run but not in the simulation are due to limitations in memory representation and manipulation
during simulation. These issues are well-documented limitations, and therefore, reporting them would not
be productive. Nevertheless, we selected a single performance bug to report to the gem5 developers, GitHub
Issue #790. We discuss it further in Section 7.

https://github.com/gem5/gem5 /issues/790, https://github.com/gem5/gem5 /issues/1227,
https://github.com/gem5/gemb /issues/1483, https://github.com/gem5/gemb /issues/1506,
https://github.com/gem5/gemb /issues/1507 and https://github.com/gem5/gemb /issues/1508.
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Table 4 Faults in gem5 found using test inputs generated by different LLM models. Columns A to F
are the number of instances of each bug found by each model: A: TinyLlama, B: Phi2, C: Llama2, D:
Magicoder, E: CodeBooga, and F: GPT-3.5-turbo. A bug can be (1) a missimulation (Mismatch), (2)
an unimplemented functionality message leading to missimulation or a crash (Unimpl.), or (3) two
types of crashes: panic (Panic error) or segmentation fault (Seg. Fault).

# Bug Bug Description A B C D E F
. Variable’s value is random in x86 but fixed in

1 Mismatch simulation. - - 1 2 6 9

2 Unimpl. system(command) unsupported. 1 - - 1 1 -

3 Mismatch wchar inputs are partially supported in ) ) ) 9 9 17

simulation, leading to a mismatch with x86.
. Time’s value is fixed in simulation as:
4 Mismatch g aen 9 02:46:40 2001°. = = 5L L6k
. Bug related to complex numbers.
5  Mismatch (Bug fixed between the two tested versions.) ) B ) ) 1 B
The simulation does not handle -0.0 correctly.
6  Mismatch Assign 0.0 instead of -0.0 when obtained via - - - - - 1
strtold with no related warning.
Numbers subtraction was simulated wrongly
7  Mismatch due to long double simulated as an 80-bit float. - - - - - 7
We reported the bug, GitHub, gemb, #1227.
. Fatal error due to syscall clock nanosleep
B Witk unimplemented at src/sim/syscall _emul.cc:67. ) ! T 2 3 !

Fatal error due to unimplemented syscall dup3

9 Unimpl, at src/sim/syscall _emul.cc:67. ) ) ) ) ) 5
10  Unimpl. Simulation warning ’fdivr’ unimplemented. - - - - - 1
11 Unimpl. Simulation warning ’fcomip’ unimplemented. - - - - 3 4
12 Unimpl. Simulation warning ’fscale’ unimplemented. - - - 1 1 5

Simulation warning ’fscale’ unimplemented.
13 Unimpl. Related to strtold, led to missimulation. - - - - 1 1

The bug was fixed in version 23.1.0.0 (May 2024).
Simulation warning ’fxam’ unimplemented.
14  Unimpl. Related to atof, led to missimulation. - - - - - 1
The bug was fixed in version 23.1.0.0 (May 2024).
. Tried to execute unmapped address at
15 Panic error src/arch /x86 /faults.cc:166. I 1 ! B B
Tried to read unmapped address (same loc.).
We reported the bug, GitHub, gemb, #1507.
Tried to write unmapped address (same loc.).
We reported the bug, GitHub, gemb, #1483.
src/sim/faults.cc:60: panic: panic condition
18  Panic error  !FullSystem occurred: fault (Divide-Error) - 1 3 2 - 7
We reported the bug, GitHub, gemb, #1506.
src/sim/faults.cc:60: panic: panic condition
19  Panic error  !FullSystem occurred: fault (General-Protection). 3 3 8 11 14 &4
The bug was fixed in version 24.0.0.1 (Aug 2024).
src/arch/x86 /faults.cc:131: panic:
20 Panic error  Unrecognized/invalid instruction executed. - 1 6 1 4 8
We reported the bug, GitHub, gem5, #1508.
Assertion violation due to UB in C test code
21 Seg. fault (address and type conversation), at - - 6 - 1 -
src/sim/fd_array.cc:321.

16  Panic error

17  Panic error
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Table 5 Faults in gem5 found using test inputs generated by different LLM models: number of
LLM generated binaries (col 2), number checked by hand (col 4), those exposing bugs (cols 6, 7).

Auto-Analysed Manually Analysed Bugs
LLM Eest ¥nputs Test (%) TETPE;?;;S Unique
onsidered Inputs Bugs
a Bug
TinyLlama 211 100% 23 10.9% 9 4
Phi2 527 100% 23 4.36% 15 6
Llama2 2136 100% 50 2.34% 170 10
Magicoder 8839 100% 18 0.20% 47 11
CodeBooga 2356 100% 66 2.80% 58 14
GPT-3.5-turbo 13601 100% 187 1.37% 237 17
GPT-3.5-turbo (SSBSE 2023) 823 100% 2 0.24% 0 0

Table 5 - Analysis of Bugs’ Classification: We marked a test as "possibly exposing a
bug" if the execution of the program on X86 and the simulator gave different results—for
example, if one crashed or froze while the other worked. We applied this strategy to
100% of the test inputs generated by each of the LLMs. From this auto-analysed test
input step, we got a population of "possibly exposing a bug" test inputs.

However, not all test inputs that looked like bugs were actual problems — for
example, small differences when printing the PATH variable or tiny rounding differences
in numbers were fine and not treated as bugs. At this stage, we used a semi-manual
approach: 1) We first removed the acceptable differences by looking at the outputs.
2) Then, we grouped test inputs by behaviour, mismatches in one set and crashes or
panics grouped by their trace (this step was automated). 3) Finally, we looked at each
group and manually analysed one example from each: we examined the program’s
binaries, crash messages (i.e. the crash trace), and the test input behaviour under
small modifications (code or input) or compilation with a different compiler (we used
clang 12.0.0).

An example of a group of test inputs is shown in Listing 4. In this case, we manually
analysed the first test input, reported it as a bug to the developers (#1483), and waited
for their feedback. If the bug turned out to be unique or needed more investigation,
we analysed the rest of the inputs; otherwise, we considered the group handled and
did not review the others. Although this group contained 14 test inputs (in Table 4),
we only analysed one — it counts as a single instance of manual analysis, not 14.

>> Test /home/ubuntu/experiment—7/CodeBooga/input/test_input_665939085707730 . txt
src/arch/x86/faults.cc:166: panic: Tried to write unmapped address Ox7fffff7fecff8 .

>> Test /home/ubuntu/experiment—7/Llama/input/test input 445878184857718 . txt
src/arch/x86/faults.cc:166: panic: Tried to write unmapped address Oxffffffffffffffef .

>> Test /home/ubuntu/experiment—7/Llama/input/test_input_461252773633251.txt
src/arch/x86/faults.cc:166: panic: Tried to write unmapped address Ox3ffffffff677a .

>> Test /home/ubuntu/experiment—7/Llama/input/test_input_ 462721458102543.txt
src/arch/x86/faults.cc:166: panic: Tried to write unmapped address 0x26000.

>> Test /home/ubuntu/experiment—7/gpt3.5—new/input/test_input_ 1707660028 .txt
src/arch/x86/faults.cc:166: panic: Tried to write unmapped address 0x10102464c457f.

Listing 4 The test inputs’ grouped by error message "panic: Tried to write unmapped address'.

Table 5 presents statistics for test inputs analysed per LLM model (LLM col.).
Columns 2-3 show the total number of test inputs per model with 100% of them
automatically analysed. Columns 4-5 show how many were manually analysed and
their percentage out of the total (e.g. for TinyLlama, 23 test inputs is around 10.9%
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Table 6 Results of applying afl-cmin to the different corpora of test inputs to minimise them.
Initial Size (initial corpus size), Minimised Size (size after minimisation), Reduction (percentage
reduction in size of corpus), and Coverage Loss (percentage reduction in test coverage).

Note: the coverage loss computed using and comparing with the raw coverage data in Section 6.1.

Tiny- . Magi- Code- gpt-3.5 gpt-3.5-turbo
Llama Phi2  Llama2 coder Booga -turbo (SSBSE 2023)
Initial Size 211 527 2136 8839 2356 13601 823
Minimised Size 206 366 613 719 612 703 442
Reduction 2.37% 31.7% 71.3% 91.9% 74.0% 94.8% 46.3%
Coverage Loss 0.0% 0.054% 0.689%  0.165%  0.113% 0.181% 0.0%

out of 211 test inputs). Column 6 lists how many tests revealed a bug and column 7
reports the number of unique bugs found per model. In total, we manually examined
23 TinyLlama, 23 Phi2, 50 L1ama2, 18 Magicoder, 66 CodeBooga, 187 GPT-3.5-turbo,
and 2 GPT-3.5-turbo (SSBSE 2023) generated test inputs flagged by our strategy
(Table 5). An example of a manual inspection process of bugs is given in Section 7.1.
The numbers were lower for models that produced programs with a higher rate of
non-determinism?°, but the results generally followed the model’s size. The exceptions
were Magicoder, which exhibited a higher rate of non-determinism in its generated
code and GPT-3.5-turbo (SSBSE 2023), which depended on test programs as input,
limiting its search space as discussed above.

RQ1 Answer. All models found bugs in gem5. We found 21 bugs in gemb,
14 of which were missimulations or unimplemented functionality in the simu-
lator. The effectiveness of LLM test input generation — measured by coverage,
throughput, and bug-finding capability — generally improved as the model size
increased.

Factors such as non-determinism in the generated code or restricting the genera-
tion to test program sources (which limits the search space) negatively impacted the
model’s test input generation capabilities. We expect these two factors to also affect
the efficiency of fuzzing with AFL++ (RQ4).

6.2 RQ2: Fuzzing Preparation (I) - Corpus Minimisation

Fuzzing outcomes are heavily influenced by seed minimisation and corpus selection,
recommending against input corpora exceeding 100 test inputs [29, 30]. A compact
yet diverse corpus enhances fuzzers’ (like AFL++) ability to uncover new paths and
bugs in the SUT. In contrast, a large corpus extends startup time, diminishing actual
fuzzing time, and exhausts resources quickly.

All our input corpora had over 100 test inputs. We used AFL++’s corpus minimi-
sation analysis to remove redundancy from the LLM generation process. (AFL++’s
minimisation process employs an approximate edge coverage heuristic, evaluating orig-
inal test suites and eliminating redundant test inputs, i.e., if they cover transitions
already addressed by other test inputs.)

20¢.g. we found 552 calls to rand in Magicoder generated code, while CodeBooga and GPT-3.5-turbo had
only 317 and 150 such calls, respectively.
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While filtering invalid inputs (RQ1, Figure 8, grey/white stripes bar) provided
some insight into the quality of LLM-based code generation and AFL++’s potential seed
selection (preferred vs ignored), it was merely a naive estimation. In RQ2, we inves-
tigate a more comprehensive approach using afl-cmin analysis to enhance AFL++’s
GA performance, aiming to minimise the corpus based on edge coverage heuristics
(ensuring higher diversity) rather than output behaviour.

To generate data to answer RQ2, we used data from RQ1’s 7 sets and processed
with afl-cmin, resulting in 14 corpora (initial and minimised). Table 6 summarises
the statistics on the population size and coverage after corpus minimisation using
afl-cmin on valid test inputs population (Figure 8 striped grey/white bars). We
measured the line coverage of the sets before and after minimisation.

Table 6 shows the original size of each LLM-based input generation corpus (row 1)
and its size after initiation with afl-cmin (row 2). Row 3 presents the percentage
of the minimisation, and row 4 is the line coverage loss due to minimisation. For
example, consider GPT-3.5-turbo (SSBSE 2023) (last column in Table 6). We used
afl-cmin on 823 of the GPT-3.5-turbo test inputs (row 1), resulting in an optimised
corpus size of 442 test inputs (row 2). That is, shrinking the size of the original test
set by 46.3% (row 3), while losing no coverage (0.0% of the original line coverage as
in Section 6.1; row 4).

After minimisation, all corpora contain fewer than 800 test inputs. Table 6 shows
that Llama2 and CodeBooga reduced their test sets to about a quarter of their
original corpus size. Phi2 and GPT-3.5-turbo (SSBSE 2023) nearly halved in size.
Magicoder and GPT-3.5-turbo underwent a more than tenfold reduction. Since
the reduction in line coverage was negligible (or nonexistent for TinyLlama and
GPT-3.5-turbo SSBSE 2023), this indicates considerable redundancy in the original
test sets and that afl-cmin heuristics effectively predict coverage while reducing the
input corpus size. We further investigated these observations when fuzzing, comparing
the performance of the minimised sets and the fuzzed corpus diversity (RQ4).

One exception to the above is the case of TinyLlama. The reduction was only
by 5 test inputs with no reduction in coverage. This is likely due to its small size.
However, according to afl-cmin analysis, it could also indicate that TinyLlama pro-
duced a non-redundant test corpus. Additionally, we observed an issue where our
coverage script measured +1 line covered with the minimised set despite identical
function coverage. This discrepancy occurred in the memory controller area (line
1179 in src/mem/dram_interface.cc, gemb version 23.0.0.1--SSBSE Challenge
Track). To rule out concurrency dependencies or non-deterministic factors like the
rand() or time() functions’ effects in the test inputs, we repeated the coverage mea-
surement five times with both sets (before and after minimisation sets). With each
repeat, the anomaly persisted.

RQ2 Answer. The test case redundancy, measured by branch coverage, is
significantly higher for medium- and large-sized models (approx. 70%-90%), in
comparison to small language models. However, regardless of the model size,
the coverage reduction is negligible after minimisation.
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Fig. 9 AFL++ corpus and edge coverage metrics after 1 hour of fuzzing across the 30
settings. The four graphs present statistics on: the number of new tests (top-left) and crashes (top-
right) in the corpus with edges (bottom-left) and the maximal depth (bottom-right) coverage metrics.

6.3 RQ3: Fuzzing Preparation (II) - Selecting Parameters
Values for SearchSYS

For fuzzing with our custom mutators, we had to select the parameters beforehand
for afl_custom_fuzz_count customised function. We ran fuzz testing for 1 hour,
repeating the experiment 30 times per test set using the tiniest corpus for performance
(i.e. TinyLlama-cmin, Figure 8), totalling 900 hours of fuzzing?!. This process aided
in identifying the optimal set for fuzzing. Data was collected by fuzzing the smallest
corpus with 30 different SearchSYS parameter settings files for 1 hour each, repeated
30 times, totalling 900 hours of fuzzing. Data was aggregated by setting (1-30).
Figure 9 illustrates the outcomes of fuzzing with Settings 1 to 30 (numbered 1 to
30 on the x-axis) for 1 hour, averaging all 30 repeats per set. We evaluated four mea-
sures: new test inputs in the fuzzed corpus (top-left), crashes found during fuzzing
(top-right), new edges covered (bottom-left), and search depth (bottom-right). The
edge and depth statistics are part of the edge coverage metrics??, which give us (among
other metrics available in AFL++), the number of covered blocks and the path depth
reached during 1 hour of fuzzing. These measures assessed fuzzing effectiveness in
test input generation (top) and depth/coverage (bottom). Setting number 27 per-
formed best in the crashes found and search depth. Setting 3 had the highest new
edge coverage while Setting 30 generated the most test inputs. Consequently, we set
afl_custom_fuzz_count to be 17, 84 and 6623 for Operator 1, 2 and 3, Section 3.2.1.

21That is 1 hour x 30 repeats x 30 different selections for the afl_custom_fuzz_count customised function’s
values as described in Section 5.4. Since we did not collect the fuzzed corpus at this stage, configurations
1 and 3 are essentially the same. The difference will become apparent when we collect and examine the
fuzzed corpus in RQ4.

22Gee further information on statistics AFL gives via fuzzer_stats file at https://afl-1.readthedocs.io/
en/latest/user guide.html and https://github.com/AFLplusplus/AFLplusplus/blob/stable/docs/afl-fuzz__
approach.md#addendum-status-and-plot-files

23Settings 27 file is: 17 84 66.
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RQ3 Answer. A 1-hour experiment produced statistics for 30 Settings files
(generated randomly), showing significant diversity in the four measures: the
number of new test inputs, edges, crashes, and search depth. Given Setting 27
excelled in two measures and performed adequately in others, we employed it
as the values of afl_custom_fuzz_count for SearchSYS.

. J

We consistently applied the same settings file across all experiments in our eval-
uation for configurations 1 and 3, as the differences between the two configurations
did not affect the analysis of the RQ2 statistics above. Configuration 1 included
all customisations: type mutator, saving test inputs for later review, and overriding
afl_custom_fuzz_count. In contrast, Configuration 3 only used the type mutator
and overrided afl_custom_fuzz_count, without saving test inputs. (See Section 5.3
for the definition of each configuration.) The 30 settings files with the experiment
results are available at [4].

6.4 RQ4: Efficiency of Fuzzing

We followed the procedure discussed in Section 5.4 to answer the last research
question. Specifically, we designed and carried out a set of controlled experiments,
fuzzing with each possible combination of input corpus (Section 5.2) and configuration
(Section 5.3), using the specification discussed in Section 5.5.

We started 70 instances of Docker with SearchSYS, each running for 24 hours
with a unique combination of the 14 available input corpora and 5 configurations,
totalling 70 instances. After each 24-hour run, we stopped the fuzzing, collected data
and repeated the fuzzing process with a new set of 70 dockers. This cycle continued
until we completed 10 repeats for each input corpus and configuration combination.
Of these 700 runs, 16 failed the coverage measurement stage. These sets were of the
fuzzed inputs with TinyLlama initial corpus (15) and GPT-3.5-turbo (SSBSE 2023)
initial corpus (1). All experiments with minimised corpora were completed success-
fully. Figure 11 gives the averages of the runs which ran to completion. Inspection
of the standard error of the means (shown with error bars) suggested that any data
gathered from the failing run would not have had much impact and was unlikely to
change the conclusions we could draw without it. For example, in Figure 11 for Phi2
(top right) the blue and grey lines already lie close to each other (cf. the error bars).

Data was collected from 700 sets generated by fuzzing 14 input corpora (7 initial
and 7 minimised) for 24 hours each with 5 configurations, repeating each combination
10 times, totalling 16 800 hours of fuzzing. The data was aggregated by input corpus
and configuration into 70 groups, with results presented as averages of the 10 repeats
per group. During bug investigations, due to the extensive data requiring semi-manual
inspection, we used a single set (arbitrarily we chose the last set, set 10).

Throughput. Figure 10 shows the number of new test inputs generated during
24 hours of fuzzing per initial and minimised corpora (14 corpora, in total) across
five configurations. The size of the initial corpus is excluded from the total number
(i.e., the bars represent the delta between the sizes of AFL++’s queue after 24 hours
and the input corpus). The grey, grey /light-grey stripes, grey /white stripes, light grey,
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and blue (dark grey, in greyscale mode) represent the mean values for configurations
1 to 5, respectively. The additional fuzzed test inputs persistently saved when using
configurations 1 and 2 are excluded from Figure 10 due to the numbers being on a
very different scale?*. Moreover, as these inputs were not part of the queue and did
not affect the GA component during fuzzing, including them would be misleading.

Yet, saving test inputs to persistent storage (the Throughput Improvement by
Keeping all Fuzzed Inputs variant) can theoretically significantly increase the rate
of generated test inputs for the post-fuzzing differential testing stage. However, by
comparing the performance of Configuration 2 and Configuration 3 in Figure 10,
we observed that the final queue size was mostly smaller when saving these test
inputs, indicating a performance decrease with this throughput improvement. This
was expected because writing to persistent storage introduces overhead from both I/0
operations and the management of a larger set of test files, which probably neutralised
potential throughput gains. Furthermore, many of these additional test inputs were
duplicates, as they did not pass through AFL++’s fitness function, contributing little
to overall fuzzing efficiency. This further suggests that the two customisations related
to overriding afl_custom_fuzz_count and independent mutators (to allow better
heuristics for AFL++’s GI components) probably yielded a more diversified queue than
just keeping all test inputs.

The best throughput of new fuzzed test inputs (in the queue) is achieved by
GPT-3.5-turbo-cmin (SSBSE 2023) Configuration 3 (1258.6), TinyLlama Config-
uration 3 (1246.3), GPT-3.5-turbo (SSBSE 2023) Configuration 1 (1233.2) and
TinyLlama-cmin Configuration 1 (1203.4), all with around 1200 new fuzzed generated
test inputs. The lowest rate was achieved mainly by GPT-3.5-turbo, which seemed
to have a low generation rate in general (all experiments ended with at most 300
new test inputs). More specifically, GPT-3.5-turbo Configuration 5 (15.6), Magicoder
Configuration 5 (24.4), GPT-3.5-turbo Configuration 3 (40) and GPT-3.5-turbo Con-
figuration 1 (46.1). Considering that the af1-cmin and TinyLlama sets commonly had
the highest throughput rates, while the larger sets appeared to have the lowest rates:
these results support the general recommendation to keep the corpus small [29, 30].
Another interesting result was that the performance of GPT-3.5-turbo (SSBSE 2023)
and TinyLlama was roughly the same across all sets, regardless of whether using min-
imised corpora or not. This indicates that using semi-manually selected high-quality
test inputs with a large language model might achieve similar generation rate during
fuzzing to a small LLM, locally managed with a fully automated generation approach,
due to differing objectives — coverage-directed fuzzing aims to increase coverage, while
LLMs prioritise text diversity.

Lastly, Configuration 5 generally showed the lowest performance across all exper-
iments (with the same input corpus), except with GPT-3.5-turbo-min, where it
ranked in the middle. This suggests that our additions generally improved throughput.
The largest improvement was observed between Configuration 5 (SearchGEM5 as is)

24For TinyLlama, Phi2, Llama2, Magicoder, GPT-3.5-turbo and GPT-3.5-turbo (SSBSE 2023), the average
number of unique test inputs for configuration 1 are: 41944, 15329, 9545.2, 3418.6, 2530.6, 245.9 and 28549.9,
and for configuration 2: 34548.7, 10681.6, 7398, 3375, 6526.2, 1041.8 and 16322.4, respectively. For the
minimised corpora: TinyLlama-cmin, Phi2-cmin, Llama2-cmin, Magicoder-cmin, GPT-3.5-turbo-cmin, and
GPT-3.5-turbo-cmin (SSBSE 2023); for configuration 1 they are: 42624.1, 13040.3, 17171, 4633.1, 3281,
479.5, and 17541.8, and for configuration 2: 33733.6, 15110, 9599.8, 13313.2, 7965.3, 11161.8, and 14426.3.
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and Configuration 4 (SearchSYS with no throughput improvement customisations),
indicating that our customisation of the mutators had an important impact.

Coverage. Figure 11 shows the average line coverage additions on top of the baseline
coverage in Section 6.1. This was done for both initial and minimised corpora (14
in total) across five configurations, with 10 repetitions of fuzzing per corpus and
configuration. The dashed light-blue line is the line coverage achieved at the end of
fuzzing with the initial corpora, while the solid grey line shows the results with the
minimised corpora. The line coverage of the initial and minimised corpora before
fuzzing (i.e. the baseline Section 6.1) is marked by the dashed black and dotted blue
lines, respectively.
The highest coverage is achieved by each LLM source:
e Magicoder Configuration 3, minimised corpus, 45134.7 lines
e GPT-3.5-turbo Configuration 2, with no effect regarding initial or minimised
corpus, hinting that SearchSYS could little diversify the test inputs at that stage,
44959 lines
e Llama2 Configuration 3, minimised corpus, 44 020.7 lines
* CodeBooga Configuration 4 with the initial corpus, 43 303.5 lines. Configuration 1
might possibly be better occasionally with the initial corpus but due to variations
in the measurements this cannot be determined
e GPT-3.5-turbo (SSBSE 2023) Configuration 1, initial corpus, 43 187.5 lines?”

At a much lower scale, we have the small models, below 40000 lines covered, with
Phi2 (Configuration 1, initial corpus, 39001.5) and last TinyLlama (Configuration 3,
initial corpus, 38 498.2 lines).

From these results, we observed that the baseline coverage achieved by the ini-
tial or the minimised corpus can predict to some extent the coverage after fuzzing
(e.g. Magicoder outperformed GPT-3.5-turbo even though Magicoder’s initial and
minimised corpora had lower baseline coverage). Commonly, Configuration 3 per-
formed the best, Configuration 5 was outperformed by the others, and using the
minimised corpus led to better performances when the initial corpus was large. Lastly,
GPT-3.5-turbo (SSBSE 2023) with Configurations 1 and 3 diversified the test inputs
during fuzzing similarly to the smaller models, L1ama2, Phi2, and TinyLlama, sug-
gesting that a complex few-shot approach could be replaced with zero-shot prompting
on smaller models in the context of fuzzing. However, SearchSYS likely diversified
test inputs more effectively for Phi2 and TinyLlama due to their much lower baseline
coverage.

Bugs. We manually inspected each fuzzed test input that led to a performance bug
or a mismatch.

Performance bugs include timeouts and out-of-memory instances. Mismatch bugs
include cases where the simulation ended normally but the native run failed (i.e. bug
masking), the simulation crashed with the native run exiting normally, or both ended
successfully but produced different outputs (e.g. printed different results or had
different return code).

25See [4] for a full breakdown of the coverage numbers for each of the 700 repetitions.
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Fig. 11 Aggregation of 700 sets as the mean line coverage with the AFL++’s queue after
24 hours of fuzzing per LLM model with each of the five configurations.

Notes: (1) Aggregation is on top of the baseline coverage of the initial and minimised corpora.

(2) The line T error bars give the standard error of the means (SEM).

(3) TinyLlama and Phi2 scale much lower than the others. Consequently, their y-axis scale is set
between 35000 and 41 000, instead of 40 000 to 46 000.
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Table 7 Number of fuzzed test inputs exposing bugs in gemb5 found during 24-hour fuzzing

aggregated by configuration.

Performance Bug masking Crash Diff. output ‘ Total
Conf. 1 (SearchSYS) 458 54642 2654 4394 | 62148
Conf. 2 (First Imp.) 908 26360 2261 4744 34273
Conf. 3 (Second Imp.) 106 2531 82 235 2954
Conf. 4 (No Imp.) 40 1574 91 67 1772
Conf. 5 (SearchGEM5) 31 185 21 58 295
Total 1543 85292 5109 9498 ‘
Friedman (p-value) v0.0737 AA4.53e-05  4A0.0261 A0.0186 |

Table 8 Number of fuzzed test inputs exposing bugs in gemb found during 24-hour fuzzing
aggregated by configuration (Input-corpus ordered alphabetically).

Input-corpus Performance Bug masking Crash  Diff. output
CodeBooga-cmin 5.8 + 4.8 38.6 + 35.6 2.6 + 3.2 2.4+ 2.6
CodeBooga 70.6 + 151.2 35.0 £ 31.8 18.0 £ 22.1 0.0 £ 0.0
Llama-cmin 29.6 £+ 39.1 1030.6 + 2070.9 53.6 £ 111.0  259.2 + 546.9
Llama 30.4 + 40.1 915.8 £ 1935.5 77.0 &£ 133.7  260.8 £ 335.9
Magicoder-cmin 104.4 + 192.0 836.8 £+ 1800.3 39.8 £ 79.0  268.0 + 457.7
Magicoder 7.4+ 12.9 109.2 £+ 193.1 19.6 £+ 41.6 29.2 £+ 58.8
Phi-cmin 6.6 £ 9.8 1575.2 £+ 3371.8 42.4 + 55.1  128.4 + 212.7
Phi 2.0 £+ 3.1 398.8 + 638.1 3.2+ 4.6 3.6 75
TinyLlama-cmin 5.4 +£5.9 3379.6 + 4240.6 107.6 & 211.3  259.8 £ 440.1
TinyLlama 6.2 + 8.6 4062 + 5611 121.8 4+ 169.5 76.0 + 121.0
gpt3.5-new-cmin 3.6 £4.8 59.4 + 71.0 16.2 £ 18.7 530 + 1148
gpt3.5-new 0.4+ 0.9 20+ 1.2 115.2 4+ 209.1 0.0 + 0.0
gpt3.5-old-cmin 23.8 £ 36.9 1908.2 £+ 3225.8 150.0 £+ 255.9 32.0 + 44.0
gpt3.5-old 12.4 +£ 9.8 2706.8 £ 4221.0 254.8 + 499.7 50.6 £ 62.5
Friedman (p-value) A0.0042 AA2.84e-06 AA9.33e-06 A0.00135

During this inspection, we manually classified some bugs as bugs #3, #8, #9,
#15 and #16 from Table 4. Additionally, we identified 9 unique potential crashes.
Due to the large number of bug instances found and the absence of source code
for most fuzzed test inputs, requiring time-consuming manual decompilation, we did
not further classify the remaining bugs. However, we manually inspected a mismatch
bug in Section 7. We decompiled the fuzzed test input binary executable for manual
inspection and tried to reduce the bug.

Table 7 presents the number of fuzzed test input instances exposing bugs in gemb
found during 24-hour fuzzing. The columns “Performance”, “Bug masking”, “Crash”,
and “Diff. output” in the table are the total number of fuzzed inputs that resulted
in performance bugs (timeouts or out-of-memory errors), bug masking, gem5 crashes,
and output mismatches, respectively. These counters are aggregated by configuration
(as described in Section 5.3) using data from all 14 input corpora.

The highest number of 62148 issues in total was found by SearchSYS (Con-
figuration 1), followed by Configuration 2 (34273), Configuration 3 (2954) and
Configuration 4 (1772). SearchGEM5 (Configuration 5) had the poorest bug ability
discovery, with only 295 instances, in total. Per category of bugs: The highest number
of bug masking and crashes were found by Configuration 1, while performance bugs
and mismatched output triggered the most by Configuration 2. To sum,
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e The bug discovery ability improves when fuzzing with our customisation.
e The Throughput Improvement by Keeping All Fuzzed Inputs customisation has a
greater impact than optimising afl_custom_fuzz_count.

This is because Configuration 2, which only keeps all fuzzed inputs to improve
throughput, outperformed the two others (Configuration 3 uses solely the optimis-
ing afl_custom_fuzz_count option, while Configuration 4 includes neither of the
throughput improvement). We shared our analysis as an Excel file, with additional
details on the bugs we classified so far, in [4].

Choosing the best configuration: Regarding the different configurations, we applied
the Friedman test and the corresponding post-hoc tests to identify statistically sig-
nificant differences across each metric and configuration (with a p-value threshold of
0.05). According to the general test, there is a statistically significant difference across
all configurations for every metric except for performance, which has a p-value higher
than 0.05. Moreover, bug masking shows a strong difference across the distribution of
results for the various configurations.

We employed the Nemenyi-Friedman post-hoc tests to perform pairwise compar-
isons between the configurations. In terms of crashes, we found statistically significant
differences between configuration 5 (SearchGEM5) and 1 (SearchSYS), configuration
5 and 2 (First Imp.), configuration 3 (Second Imp.) and 1, and configuration 4 (No
Imp.) and 1. This indicates that the improvements introduced in SearchSYS are sig-
nificantly better for detecting crashes compared to all other configurations, except for
configuration 2 (First Imp.), which shows similar performance.

For differential testing, there is a statistically significant difference between con-
figurations 5 and 1, demonstrating that the new methodology significantly improves
upon our previous approach.

With respect to missimulations or bug masking, we observed statistically signifi-
cant differences between configuration 5 and all others (4, 3, 2, and 1), indicating that
the previous method is significantly worse than any of the improved configurations.

Finally, in terms of performance, there is a statistically significant difference only
between configurations 2 and 5, and 2 and 4, showing that the First Imp. configuration
achieves significantly better performance than the old configuration and generally
provides improved results for this metric.

Choosing the best LLMs: With respect to the results of the large language models,
Table 8 extends Table 7 by dividing the results according to each language model.
This highlights which initial test suite yields the most effective results across the
different metrics. The performance of the various language models varies significantly
and is generally unstable, as indicated by their standard deviations. This instability
suggests that the performance of LLMs is highly variable —either extremely good or
poor— across different executions, with no model showing consistent results.

For the metric of discovering performance bugs, the best test suite is the one gen-
erated by Magicoder-cmin, which discovers an average of 104 bugs. For bug masking,
the most effective model is TinyLlama, exposing 4062 bugs. In terms of crashes, the
best performer is the old version of the test suite generated by GPT-3.5-turbo (SSBSE
2023), which detects 255 bugs. Finally, for differential testing, the best result comes
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from the new version, GPT-3.5-turbo-cmin, which discovers 530 bugs. However, it is
important to note that none of these results were stable in terms of standard deviation.

After applying the Friedman test to the different LLMs, the general test indi-
cates a clear imbalance across the LLMs, as it passes for all metrics and shows
strong statistical significance in bug masking and crashes. However, when applying
the Nemenyi-Friedman post-hoc tests, we find that in three out of the four metrics
— specifically performance, crashes, and differential outputs — there is no statistically
significant pairwise difference between the LLMs. This is likely because the test is
performed across all configurations, and LLM performance varies depending on the
chosen configuration.

It is important to consider that the Friedman test is a global test and is sensitive
to overall variations, thus detecting general imbalances. In contrast, the Nemenyi-
Friedman test performs pairwise comparisons, is more conservative, and includes
corrections, making it harder to detect significant differences between individual pairs
— especially with small sample sizes.

In conclusion, the Friedman test provides evidence that not all models perform
equally. However, according to the post-hoc test, no single LLM stands out as signifi-
cantly better than the others. Their performance depends on the configurations, with
configuration 1 being the most suitable for the majority of the metrics.

-

RQ4 Answer. Configuration 1 (SearchSYS) and Configuration 3 (with "Opti-
mising afl_custom_fuzz_count") commonly achieved the best code coverage
and fuzzing throughput. The best bug-finding capability was observed with
Configuration 1 (SearchSYS) and Configuration 2 (with "Keeping All Fuzzed
Inputs"). Therefore, Configuration 1 is the most effective overall, as it combines
both customisations in addition to the mutator customisation (that all but
SearchGEM5 includes), making all three customisations essential for enhancing
SearchSYS’s bug-finding, throughput and coverage effectiveness.

7 Discussion

In this section, we thoroughly examine two bugs we discovered — a hang and a
missimulation — providing a detailed investigation in Section 7.1. Further discus-
sion on bug classification, including crashes and missimulations, can be found at
https://youtu.be/hEyhXJg-rbU. We then discuss the bug reports and the acknowl-
edgement of the results in Section 7.2. Lastly, we explore the effectiveness of our two
approaches in GPT-3.5-turbo generation in Section 7.3.

7.1 Investigation of Two gem5 Bugs

A Performance Bug. SearchSYS generated several hangs (see Section 6.1,
Section 6.4 and [2]). We did a short investigation using one of these hangs to better
understand hang bugs’ relevance to the quality of system simulators and to gather
developers’ feedback.
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The program contains a loop in function main that calls fnl function from that
loop. We compiled the program binaries using GCC-11 -03 and Clang-16 -03, allow-
ing us to compare the simulation and native runs with two different binaries of the
same program. The full bug report and the code are available?S.

The hang occurred exclusively in gem5 simulation with input values extremely
near INT_MIN (e.g. -2147483648, -2147483647 and -2147483640). With slightly bigger
values, the gem5 simulation finished within a second (e.g. -214748364). These inputs
did not cause a hang in a native execution using the same binary. The gem5 develop-
ers confirmed the bug but closed this issue, noting that the simulation completes, if
allowed to run overnight. This implies that hangs and performance issues are likely
lower prioritised in such systems.

A Missimulation Bug. SearchSYS has the ability to generate binaries that
make gemb5 crash. The system, in such a case, provides some details for diagnosis. For
missimulation, we use differential testing, comparing gem5 and native and using the
test program for diagnosis.

Fuzzed corpus test inputs leading to mismatches are more challenging to analyse.
In the case of a mismatch from the fuzzed corpus, we only know that the results
are inconsistent, but without the binary’s source code, debugging becomes difficult.
Investigating the nature of the bug requires a reverse engineering process to under-
stand which parts of the original binary were modified during fuzzing and how they
can affect the system. Apart from this, we need to provide a minimal example that
activates the bug.

Here, we discuss our semi-manual analysis of bug #15 [2] and the challenges
involved. In this case, the response of gem5 and the system’s response were dif-
ferent for the same binary program and arguments’ input. The mismatch detected
was as follows; running fuzzed program .fuzzed.o 0 0 O in native, it printed:
b.a = 0, ¢ = 22091, x = O, while in gem5: b.a = 0, ¢ = 0, x = O.

Figure 12 shows the code of the fuzzed program. Using radare2 combined with
Ghidra’s decompiler?”, we reconstructed the original source code and compared it with
the “seed” program that generated this variant. The mutant code is in the normal
font style while the original is in comments only when there are differences.

In the mutation process, SearchSYS changed multiple types during the variable
definition (lines 3 to 9). This allocated different memory sizes. It also changed the
way the functions were called, instead of using strtol, as in the original program, it
used atoi with a similar purpose of transforming the inputs from strings to numbers
(lines 14, 19 and 23). It changed multiple elements of pointer arithmetic (lines 13 to
43). Most relevant to the output relates to the changes in lines 37, 40 and 43, where
it prints the values. In the original program it printed the structure, while, in the
mutant, it printed a variable and a specific memory address.

Analysing the outcome of the program, we can see that the second print differs.
In gemb with --isa X86, it prints 0 while in a x86 Ubuntu host, it prints garbage
(e.g. 22091). In this case, the expected result is garbage?®. Multiple runs show the

26gems GitHub issue #790 https://github.com/gem5/gem5 /issues/790

27https://ghidra— sre.org

28Simulators like gemb aim to replicate the hardware behaviour, including accessing random, uninitialised
memory addresses and printing whatever data resides there, e.g. for debugging purposes.
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ulong main(int32_t param_1, ulong *param_2) {

1

2 uint32_t uVaril;

3 unit uVar?2; //uint32_t uVar2;

4 unit uVar3; //uint32_t uVar3;

5 ulong uVaré;

6 uchar *puVar5; //uint32_t uVar5;

7 uchar *puVar6;

8 uchar *puVar?7;

9 uint32_t uVar8; //uchar *puVar8;

10 ulong uStack_20;

11

12 if (param_1 == 4) {

13 uStack_20 = 0x10bb; //uStack_20 = 0x10c0;

14 uVarl = sym.imp.atoi(param_2[1]); //uVarl = sym.imp.strtol (param_2
[1],0,10);

15 uVar4 = param_2[2];

16 puVarb5 = &stackOxffffffffffffffe8; //puVar6 = &stackOxffffffffffffffe8;

17 *(&stackOxffffffffffffffe8 + -8) = 0x10c8;

18 //*(&stackOxffffffffffffffe8 + -8) = 0
x10d3;

19 uVar2 = sym.imp.atoi(uVar4); //uVar2 = sym.imp.strtol(uVar4d, 0, 10);

20 uVar4 = param_2[-0xd]; //uVar4 = param_2[3];

21 puVar6 = puVar5; //puVar7 = puVar6;

22 *(puVar5 + -8) = 0x10d46; //*(puVaré + -8) = 0x10e6;

23 uVar3 sym.imp.atoi(uVar4d); //uVar3 = sym.imp.strtol(uVar4, 0, 10);

24 //_obj.c = uVar2;

25 uVar8 = uVarl & Ox1ffffff; // uVarb5 = uVarl & Ox1ffffff;

26 _obj.c = uVar2; //

27 *0x4024 = *0x4024 & Ox1fff | uVarl << 0xd;

28 uVar3 = uVar3; //uVarl = uVar2;

29 if (8 < uVar8) { //if (uVarS < 9) {

30 uVar3 = uVar2; //uVarl = uVar3;

31 ¥

32 *0x4028 = *0x4028 & O0xcO | uVar8 >> 0x13 & Ox1fff;

33 //*0x4028 *0x4028 & 0xcO | uVarS >> 0
x13 & Ox:

34 _obj.x = uVar3; //_obj.x = uVarl & Oxffffffff;

35 puVar7 = puVar6; //puVar8 = puVar7;

36 *(puVar6 + -8) = 0x113d; //*(puVar7 + -8) = Oxllda;

37 sym.imp.__printf_chk(l, "b.a = %u\n", uVar8);

38 //sym.imp._printf_chk(1,"b.a = %u\n");

39 *(puVar7 + -8) = 0x1156; //*(puVar8 + -8) = 0x1163;

40 sym.imp.__printf_chk(1, "c = %i\n", *0x400c);

41 //sym.imp._printf_chk(1l,"c = %i\n", _obj
.c);

42 *(puVar7 + -8) = 0x116f; //*(puVar8 + -8) = 0x117c;

43 sym.imp.__printf_chk (1, "x = %i\n", _obj.x);

45 uVar4d = 0;

46 } else {

47 uVar4 = *param_2;

48 *(*x0x20 + -0x20) = 0x10a6;

49 sym.imp.__printf_chk(q, "Usage: %s <val_1> <val_2> <val_3>\n", uVar4);

50 uVard = 1;

51 }

52 return uVaré4;

53

Fig. 12 Decompilation of differential testing bug.

| #include<stdio.h>

2

3 int main() {

4 __printf_chk(1,"c= %i\n", *((int *)0x400c));

5 return O0;

6%

Fig. 13 Bug minimization for the gemb bug in Figure 12.
same behaviour. This means that the way systems organise memory is different to
gemb.
Figure 13 shows a minimised program that we believe exhibits the same issue.
However, running this program in both gem5 and the host environment results in
the same outcome: a crash. Decompilation is not expected to produce valid code.
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To effectively recreate the source for our mutated binaries and minimise them, new
methods are required, such as using LLMs to assist in decompilation and minimisation.

7.2 Bugs Reported and Acknowledged

During the development of gemb5, we aimed to understand the relevance of the bugs
that we identified. We decided to communicate with different stakeholders involved
with gemb’s ecosystem and discuss the importance of the discovered bugs. Even though
our target architecture is x86, we discussed several of the tool features and discovered
bugs with ARM, which was interested in those bugs that were related to mismatches.
During our discussions with gem5 developers, they were mainly interested in the panic
errors, which are the ones where the simulator crashes. They asked us to report every
panic error. These communications have been carried out by email, although we
presented several of the bugs discovered by SearchSYS during one of the monthly
gem5 developers meetings®’. Following the meeting, we reported 4 panic errors to the
gemb issue tracker, discovered with LLM-generated test inputs as bug reports: #1483,
#1506 #1507 and #1508.

7.3 Comparison of Manual vs Template Prompt GPT-3.5-turbo
Approaches

We compared two approaches for generating test cases using GPT-3.5-turbo: a semi-
manual approach originally used on an older version of GPT-3.5-turbo (August 2023)
and the template prompt approach (Section 3.1.2). The original method involved a
more manual process, providing extensive context to GPT-3.5-turbo for each test
generation request as well as a window of previous tests which served as examples.
This method was slower, less efficient, and resulted in fewer test cases being generated.
Additionally, the quality of the generated test cases was lower, with less code compiling
successfully and achieving lower coverage.

In contrast, the newer approach uses template prompt and Table 1’s tokens to
accelerate the process. Instead of providing extensive context, we use specific, zero-
shot instructions to guide GPT-3.5-turbo in generating the desired code. This resulted
in a much higher throughput and quality of code produced, with higher coverage. We
found this approach, compared to the original method, resulted in a higher throughput
on the current GPT-3.5-turbo version (February 2024)

The improvement in the newer method can be attributed to several factors.
Firstly, the template prompt approach provides more specific and direct guidance
to GPT-3.5-turbo, reducing ambiguity and improving the relevance of the gener-
ated code. Secondly, the newer versions of GPT-3.5-turbo used in this approach
may have improved capabilities and performance, contributing to the higher qual-
ity of the output. However, due to the closed nature of the GPT-3.5-turbo model,
we cannot definitively isolate the impact of the model version from the changes in
our methodology. Nonetheless, the overall enhancement in test case generation is evi-
dent, demonstrating the effectiveness of the template prompt approach in leveraging
GPT-3.5-turbo for software testing.

29The video is available at https://youtu.be/hEyhXJg-rbU
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8 Threats to Validity

8.1 Internal Validity

Comparing Against Other Approaches. To the best of our knowledge, there
is no other fuzzer specifically designed for system simulator fuzzing while capable of
performing differential testing. This lack of comparable alternatives limits our ability
to benchmark against other methods. AFL++ has fuzzing binaries options. We briefly
discuss these, arguing their irrelevance in the context of this paper.

The binary-only fuzzing option is relevant when the source code of the SUT or the
target is unavailable (AFL++ fork of QEMU). This is an orthogonal approach dealing
with the target itself. While this provides flexibility for fuzzing targets without their
source code, it does not focus on fuzzing binary test inputs to the SUT.

AFL++’s mutators (e.g. bit-flip) can be applied on binary executable test inputs.
However, randomly flipping bits in binary executables often results in corrupted bina-
ries that fail to execute properly in both native and simulated environments, leading
to many false positives. Moreover, with no access to native x86 oracle during fuzzing,
this option can reduce the efficiency of using GI and coverage, as most mutants result
in a crash. Hence, more sophisticated techniques beyond simple bit flips are necessary
when fuzzing system simulators.

LLM Models. Our study included six different models running locally or
remotely. Initially, we excluded StarCoder [31] due to its relatively poor performance,
which was its most recent version when we started our evaluation. However, the newer
version, StarCoder2 [32], appears to be more effective and may be considered in future
work.

Seed Selection. Our work leverages LLMs to automate the generation of test
inputs and uses afl-cmin for corpus minimisation, addressing the lack of systematic
methods for generating seeds in system simulator testing. Without the LLMs, users
are required to supply an initial corpus. This challenge leads to a dependency on
LLM’s code-generation ability. Establishing such a corpus without LLMs inevitably
delves into the broader and well-studied issue of seed selection in fuzzing [29], which
is not the scope of this work. Our LLM-based approach is a first step toward the
generation of benchmarks for simulators’ ISA components, enabling future baselines.

Instrumentation. Our methodology relies heavily on the correct instrumenta-
tion of the simulator’s source code, where AFL++ is used. This may impact the runtime
performance of SearchSYS and the reproducibility of detected bugs during fuzzing,
which may no longer triggered using a non-instrumented simulator. This issue is not
unique to SearchSYS and is common when using instrumentation. To address it, we
automatically tested the test inputs from the fuzzed corpus, using a non-instrumented
build of the simulator and cross-checked it with the results from native execution. Fur-
thermore, we manually analysed bug reports generated by SearchSYS before reporting
these to the developers.

Fuzzing. We used the fuzzing methodology described in [27], where each exper-
iment lasted for 24 hours. We repeated each experiment — fuzzing each combination
of test input corpus and configuration — and reported results that are averages across
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these repeated experiments. Due to the challenge of maintaining identical experimen-
tal environments for each repetition, we repeat each experiment 10 times, which is
fewer than the recommended number of 30 repeats to mitigate the randomness inher-
ent in fuzzing [27]. Yet, Figure 9 shows that the standard deviation is largely dependent
on the LLM used rather than the selected SearchSYS’s configuration (e.g. Phi2 is
noisier than TinyLlama). It suggests that the variability in our results is more influ-
enced by the inherent randomness of LLMs rather than fuzzing, making the choice of
an LLM model significant. Alongside the results presented here, we also provide the
source code used to obtain these results, enabling the reproduction of our experiments.
However, system simulators, when used in conjunction with fuzzing, are extremely
resource-intensive, particularly in terms of system memory. Therefore, a sufficiently
capable machine is necessary to replicate our findings.

Coverage Measurement. The resources required for using SearchSYS and gemb
make it hard to measure coverage. During our experimentation, we encountered sev-
eral issues connected with these limitations especially connected with the inputs that
TinyLlama generated. Some of these inputs crashed the whole fuzzing process affect-
ing AFL++. This was predominant at employing the fuzzed-by-proxy strategy. As a
consequence, the coverage results for TinyLlama contained fewer than 10 repetitions.

8.2 External Validity

Hallucinations of LLMs pose a threat by misunderstanding the prompts provided [33].
This may lead to the generation of invalid programs, programs with undefined
behaviours [24] (e.g. uninitialised local variables), or programs with no input. Dur-
ing test input generation, we filtered out invalid programs by compiling them and
removing any sources that failed to compile from the input corpus. Programs with
undefined behaviours present a genuine risk to valid detection of missimulations. We
addressed this issue by analysing mismatches, once a bug is found, to identify and
exclude programs with undefined behaviours from the reported missimulation bugs
(see Section 8.1).

8.3 Transferability and Reproducibility

Although this paper uses gemb5 as a use case, AFL++ has been widely applied to
various targets [34-38]. Therefore, applying SearchSYS to a different target SUT
should be straightforward. Our custom AFL++ mutator is reusable since it performs
target-independent mutations.

GPT-3.5-turbo has been trained on a wide range of programming languages,
including C, Python and Java. By adjusting the LLM to target the desired program-
ming language and modifying the prompt template tokens in Table 1 accordingly,
our method can be easily adapted to generate test inputs for other programming lan-
guages [39, 40]. However, GPT-3.5-turbo is not open-source with various terms and
policies restricting its usage, making our results potentially non-transferable in some
contexts with GPT-3.5-turbo model. 011ama is preferable as it allows us to use the
exact model locally, ensuring transparency, transferability and reproducibility with
full control over the model, its version, and its seed. Similarly, with the same seed,
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AFL++ and our post-processing steps are fully reproducible and deterministic. Fur-
thermore, fuzzed binaries are not platform-independent — they can only be used on
similar operating systems and environments, such as those with the same architecture
(e.g. x86) and compatible GLib versions. This requires repeating the fuzzing phase
per target architecture.

To effectively use SearchSYS in real-world scenarios, we recommend leveraging
local LLMs via platforms like 01lama to mitigate GPT-3.5-turbo’s drawbacks dis-
cussed above. Our evaluation found Magicoder and Llama2 to offer a strong balance
between seed quality (for pre-fuzzing testing) and fuzzing performance. Nonetheless,
as LLMs evolve rapidly, we advise re-evaluating the latest versions before launching
a long fuzzing campaign. To simplify this process, we provide Docker images and full
instructions [4]. Specifically, we suggest: selecting recent LLM versions, generating
and minimising initial corpora, tuning SearchSYS parameters (as in RQ3), conduct-
ing 24-hour fuzzing runs per corpus, and performing differential testing on initial and
fuzzed corpora.

9 Related Work

With the emergence of Large Language Models (LLMs) since the Fall of 2022, several
researchers have used them to automate software engineering tasks. There are several
surveys available that were posted on arxiv.org in the second half of 2023 [41-43]. Of
these, Zhang et al. [41] provide a good summary of recent work that uses LLMs for
fuzz testing (see Section 4.3.7 [41]). Most of the work was proposed in 2023 and uses
GPT-based LLMs and user interfaces, particularly ChatGPT.

Among the work closest to SearchSYS, is CHATFUZZ, a tool introduced by
Hu et al. [44] to improve grey-box fuzzing. It automatically prompts ChatGPT to
generate seeds for fuzz testing which are similar to existing seeds but that fit better to
a given format. Xia et al. proposed Fuzz4All [11] which first generates prompts which
produce example code snippets for fuzz tester input. These samples are then evalu-
ated and those prompts that generate the largest number of valid inputs are taken
to generate more inputs for a given fuzzer. Additionally, Ackerman and Cybenko [45]
use LLMs to generate inputs from natural language specifications, then use LLM to
further mutate those, and then, in turn, input these as seeds to a fuzzer.

In the context of mutation testing [46], Dakhel et al. [47] ask an LLM to gener-
ate initial unit tests, run mutation testing to evaluate them, then enhance the LLM
prompt with information about surviving mutants to produce further test inputs.
On the other hand, Lemieux et al. [48] introduce CodaMosa, a search-based software
testing tool that prompts an LLM for new inputs during the search process, in cases
where the search gets stuck trying to cover a particular callable instruction.

There’s little work on fuzz testing hardware simulation software, most are
concerned with traditional software or embedded systems [49]. Nevertheless, Mar-
tignoni et al. [50] propose a prototype fuzzing tool for CPU emulators, called
EmuFuzzer. They used it to test five emulators (QEMU, Valgrind, Pin, BOCHS, and
JPC) finding bugs in each of them. Jiang et al. [51] test three CPU simulators (QEMU,
Unicorn, and Angr) for ARM devices. They generate valid inputs which are then auto-
matically mutated using rules that result in syntactically-valid ARM instructions. To
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generate more tests, they extract constraints which influence the execution path and
use a symbolic execution engine. Yu et al. [52] propose an automated framework,
called VDTest, to test virtual devices within full system emulators. They extract test
templates using static analysis and subsequently employ combinatorial testing [53] to
generate new test inputs. They tested eleven virtual devices, including one from gem5,
revealing 64 faults. Similarly to our approach, they use differential testing between
real devices and emulators to discover inconsistencies.

Our approach uses the AFL++ fuzzer in an unconventional way, replacing test input
fuzzing with a more sophisticated input format as discussed in Section 3, an idea that
was adopted by various domains such as compiler testing [34, 54] or network protocol
analysis to manipulate network protocols for fuzzing [37].

In terms of testing gem5, while there are efforts in verifying its architectural com-
pliance [55] and the integrity of its code, gem5 testing or verification approaches [56]
that can go deeper into its internals, such as SearchSYS, are essential to validate its
many possible options.

Serebryany et al. [57] present a hardware fault diagnosis tool in use in Google
data centres whose tests cases were derived with help from software fuzzing of CPU
simulators similar to gemb5, but they only mention gemb as a possible future tool they
would like to use. Rajeev et al. [58] use gemb to test their fuzz inputs rather than
fuzzing gemb itself.

Thus far only our previous work [2] used fuzzing to test gem5. In this preliminary
version of our work, we integrated LLMs and SBSE for the purpose of testing system
simulators, and developed a prototype of SearchSYS. Here we extend our previous
approach [2] to fully automate the process and extend the tool with new mutation
operators. In particular, we extend previous work by asking an LLM to generate an
example program, rather than providing our own, providing automated feedback to
AFL++ for mutation-selection by constructing independent mutators, improving argu-
ment mutator to produce valid values, and introducing a type mutator. Furthermore,
we test our approach with five additional local LLMs.

10 Conclusions

Finding bugs in complex simulation systems with millions of lines of code like gem5 [1]
requires new combinations of search-based strategies (such as fuzzing) and LLMs
(e.g. ChatGPT) to provide extensive test cases by re-purposing and improving existing
benchmarks of test programs. Although the initial complexity of preparing the sim-
ulation system for feedback-based fuzzing tools (e.g. AFL++ [8]) can be discouraging,
SearchSYS allows software engineers to automatically discover new errors. SearchSYS
can do better than conventional fuzz testing, as the bugs it finds need not be catas-
trophic faults, such as segmentation errors (which fuzzers typically require), but can
be a simple but automatically recognised difference in output, which is easily detected
by an internal oracle (see Section 6) [59]. In tandem with differential testing, we
showed that it allows the discovery of masked errors.

We have proposed an improved automated approach for testing system simulators
and implemented it in our prototype tool, SearchSYS. At a high level, our approach
first generates programs using LLMs, which are then input to a fuzzer with our custom
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mutators. The architectural changes proposed in this paper are essential for achieving
full automation in SearchSYS and addressing key limitations in fuzzing, as the satura-
tion problem?’. The template prompt approach facilitates the automated generation
of semantically rich test inputs, which are difficult to create manually. In contrast,
semi-manual methods like GPT-3.5-turbo (SSBSE 2023) [2] require constant effort to
produce diverse inputs, lack full automation, and risk saturation as the SUT adapts
to previously used test inputs.

We used SearchSYS to test the gemb simulator. We conducted 70 experiments, each
repeated 10 times, using 6 LLMs, 5 software configurations, and 2 corpora variants.
LLMs and fuzzing generated 101442 issues leading to 21 new bugs in gem5, including
14 missimulations®! (which typically could not be detected by vanilla AFL++, which
mainly targets catastrophic faults rather than missimulations). Furthermore, the gem5
developers requested access to the new test suite and intend fixing several of the bugs
we have already reported to them, which provides practical validation of SearchSYS’s
effectiveness.

Code and Data Availability Our tool SearchSYS, the LLMs prompts, the
experimental infrastructure, data, and results are freely available via [4].
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