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Abstract Decision-making software mainly based on Machine Learning (ML)
may contain fairness issues (e.g., providing favourable treatment to certain
people rather than others based on sensitive attributes such as gender or race).
Various mitigation methods have been proposed to automatically repair fairness
issues to achieve fairer ML software and help software engineers to create
responsible software. However, existing bias mitigation methods trade accuracy
for fairness (i.e., trade a reduction in accuracy for better fairness). In this paper,
we present a novel search-based method for repairing ML-based decision making
software to simultaneously increase both its fairness and accuracy. As far as
we know, this is the first bias mitigation approach based on multi-objective
search that aims to repair fairness issues without trading accuracy for binary
classification methods. We apply our approach to two widely studied ML models
in the software fairness literature (i.e., Logistic Regression and Decision Trees),
and compare it with seven publicly available state-of-the-art bias mitigation
methods by using three different fairness measurements. The results show that
our approach successfully increases both accuracy and fairness for 61% of
the cases studied, while the state-of-the-art always decrease accuracy when
attempting to reduce bias. With our proposed approach, software engineers
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that previously were concerned with accuracy losses when considering fairness,
are now enabled to improve the fairness of binary classification models without
sacrificing accuracy.

Keywords Software Fairness · Bias Mitigation · Classification · Multi-
objective Optimization

1 Introduction

Discrimination occurs when a decision about a person is made based on sensitive
attributes such as race or gender rather than merit. This suppresses opportuni-
ties of deprived groups or individuals (e.g., in education, or finance) (Kamiran
et al., 2012, 2018). While software systems do not explicitly incorporate discrim-
ination, they are not spared from biased decisions and unfairness. For example,
Machine Learning (ML) software, which nowadays is widely used in critical
decision-making software such as software justice risk assessment (Angwin
et al., 2016; Berk et al., 2018) and pedestrian detection for autonomous driving
systems (Li et al., 2023) has shown to exhibit discriminatory behaviours (Pe-
dreshi et al., 2008). Such discriminatory behaviours can be highly detrimental,
affecting human rights (Mehrabi et al., 2019), profit and revenue (Mikians et al.,
2012), and can also fall under regulatory control (Pedreshi et al., 2008; Chen
et al., 2019; Romei and Ruggieri, 2011). To combat this, software fairness aims
to provide algorithms that operate in a non-discriminatory manner (Friedler
et al., 2019) for humans.

Due to its importance as a non-functional property, software fairness has
recently received a lot of attention, in the literature of software engineer-
ing (Zhang et al., 2020; Brun and Meliou, 2018; Zhang and Harman, 2021;
Horkoff, 2019; Chakraborty et al., 2020; Tizpaz-Niari et al., 2022; Hort et al.,
2021; Chen et al., 2022b). Indeed, it is the duty of software engineers and
researchers to create responsible software.

A simple approach for repairing fairness issues in ML software is the removal
of sensitive attributes (i.e., attributes that constitute discriminative decisions,
such as age, gender, or race) from the training data. However, this has shown
to not be able to combat unfairness and discriminative classification, owing to
correlation of other attributes with sensitive attributes (Kamiran and Calders,
2009; Calders et al., 2009; Pedreshi et al., 2008). Therefore, more advanced
methods have been proposed in the literature, which apply bias mitigation1

at different stages of the software development process. Bias mitigation has
been applied before training software models (pre-processing) (Calmon et al.,
2017; Feldman et al., 2015; Chakraborty et al., 2020; Kamiran and Calders,
2012), during the training process (in-processing) (Zhang et al., 2018; Kearns
et al., 2018; Celis et al., 2019; Berk et al., 2017; Zafar et al., 2017), and after a
software model has been trained (post-processing) (Pleiss et al., 2017; Hardt

1 In this paper, we use term “bias repair” and “bias mitigation” alternatively to refer to
the activities conducted to improve software fairness.
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et al., 2016; Calders and Verwer, 2010; Kamiran et al., 2010, 2018). However,
there are limitations for the applicability of these methods and it has been
shown that they often reduce bias at the cost of accuracy (Kamiran et al., 2012,
2018), known as the price of fairness (Berk et al., 2017).

In this paper, we introduce the use of a multi-objective search-based
procedure to mutate binary classification models in a post-processing stage,
in order to automatically repair software fairness and accuracy issues
and conduct a thorough empirical study to evaluate its feasibility and effec-
tiveness. Here, binary classification models represent an important component
of fairness research, with hundreds of publications addressing their fairness
improvements (Hort et al., 2023a). We apply our method on two widely-studied
binary classification models in ML software fairness research, namely Logis-
tic Regression (Feldman et al., 2015; Chakraborty et al., 2020; Zafar et al.,
2017; Kamiran et al., 2012; Kamishima et al., 2012; Kamiran et al., 2018)
and Decision Trees (Kamiran et al., 2010, 2012, 2018; Žliobaite et al., 2011),
which belong to two different families of classifiers. These two models are
also widely adopted in practice on fairness-critical scenarios, mainly due to
their advantages in explainability.2 We investigate the performance on four
widely adopted datasets, and measure the fairness with three widely-adopted
fairness metrics. Furthermore, we benchmark our method with all existing
post-processing methods publicly available from the popular IBM AIF360
framework (Bellamy et al., 2018), as well as three pre-processing and one
in-processing bias mitigation method.

The results show that our approach is able to improve both accuracy and
fairness of Logistic Regression and Decision Tree classifiers in 61% of the cases.
The three post-processing bias mitigation methods we studied conform to the
fairness-accuracy trade-off and therefore decrease accuracy when attempting to
mitigate bias. Among all post-processing repair methods, our approach achieves
the highest accuracy in 100% of the cases, while also achieving the lowest bias
in 33% of these. When compared to pre- and in-processing bias mitigation
methods, our approaches show a better or comparable performance (i.e., they
are not outperformed by the existing methods) in 87% of the evaluations. With
our approach, engineers are able to develop fairer binary classification models
without the need to sacrifice accuracy.

In summary, we make the following contributions:

- We propose a novel application of multi-objective search to debias classifi-
cation models in a post-processing fashion.

- We carry out a thorough empirical study to evaluate the applicability
and effectiveness of our search-based post-processing approach to two
different classification models (Logistic Regression and Decision Trees) on
four publicly available datasets, and benchmark it to seven state-of-the-art
post-processing methods according to three fairness metrics.

2 Decision-making scenarios that highly demand fairness often require high explainability,
while low explainability is a big disadvantage of big complex models such as Deep NNs.
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Additionally, we make our scripts and experimental results publicly available
to allow for replication and extension of our work (Hort et al., 2023c).

The rest of the paper is organized as follows. Section 2 provides the back-
ground and related work on fairness research, including fairness metrics and
bias mitigation methods. Section 3 introduces our approach that is used to
adapt trained classification models. The experimental design is described in
Section 4. Threats are outlined in Section 4.5, while experiments and results
are presented in Section 5. Section 6 concludes.

2 Background and Related Work

This section introduces some background on the fairness of software systems,
measuring fairness, and bias mitigation methods that have been proposed to
improve the fairness of software systems.

2.1 Software Fairness

In recent years, the fairness of software systems has risen in importance, and
gained attention from both the software engineering (Zhang et al., 2020; Brun
and Meliou, 2018; Zhang and Harman, 2021; Horkoff, 2019; Chakraborty et al.,
2020; Hort et al., 2021; Chen et al., 2022b; Sarro, 2023; Hort et al., 2023b)
and the machine learning research communities (Berk et al., 2017; Kamishima
et al., 2012; Kamiran et al., 2012; Calders and Verwer, 2010).

While software systems can be designed to reduce discrimination, previous
work has observed that this is frequently accompanied by a reduction of the
accuracy or correctness of said models (Kamiran and Calders, 2012; Feldman
et al., 2015; Corbett-Davies et al., 2017; Hort et al., 2023b).

The power of multi-objective approaches can aid improve such fairness-
accuracy trade off Sarro (2023). Hort et al. (2023b) showed that multi-objective
evolutionary search is effective to simultaneusly improve for semantic correcte-
ness and fairness of word embeddings model. Chen et al. (2022b) proposed
MAAT, a novel ensemble approach able to combines ML models optimized
for different objectives: fairness and ML performance. Such a combination
allow MAAT to outpefrom state-of-the-art methods in 92.2% of the overall
cases evaluated. Chakraborty et al. (2020) also integrated bias mitigation into
the design of ML software by leveraging a multi-objective search for hyper-
parameter tuning of a Logistic Regression model. This work has inspired our
approach to integrate bias mitigation into the software development process,
however at a different stage. While Chakraborty et al. (2020) considered pre-
and in-processing approach for bias mitigation, we propose a post-processing
approach. Moreover, our approach is not focused on a single classification
model, but can be transferred to multiple ones, as we show by using it to
improve Logistic Regression and Decision Tree models. Lastly, while their
multi-objective optimization does not prevent the improvement of accuracy
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and fairness at the same time, our approach demands the improvement of
both. Perera et al. (2022) proposed a search-based fairness testing approach
for testing regression-based machine learning systems, and their empirical
results revealed that it is effective to reduce group discrimination in Emergency
Department wait-time prediction software.

To ensure fair software, testing methods have been also proposed to address
individual discrimination (Horkoff, 2019; Zhang et al., 2020; Zhang and Harman,
2021; Ma et al., 2022). Tools such as Themis (Galhotra et al., 2017; Angell
et al., 2018) and AEQUITAS (Udeshi et al., 2018) are able to generate tests to
detect individual discrimination. Similarly, Aggarwal et al. (2019) created tests
to detect individual discrimination, however do this in a black-box manner.
Ma et al. (2022) proposed a novel an approach for the selection of the initial
seeds to generate individual discrimination instances (IDIs) for fairness testing,
dubbed I&D, which is effective for improving model fairness. We refer the
reader to a comprehensive survey on Fairness Testing Chen et al. (2022a).

Empirical studies haven also been carried out by the software engineering
community to gain insight on software fairness. Biswas and Rajan (2020)
investigated fairness and bias mitigation of real-world crowd-sourced ML models.
Furthermore, Harrison et al. (2020) studied the way in which humans perceive
the fairness of ML models. Zhang and Harman (2021) found that the fairness
of ML software can be improved by using a richer feature set for training.
Hort and Sarro ([n.d.]) pointed out that reducing the bias of ML software
can come at the cost of losing the ability to differentiate between desired
features Hort and Sarro ([n.d.]). To allow for a benchmarking of bias mitigation
methods, Hort et al. (2021) proposed Fairea which provides a baseline and
quantitative evaluation of fairness-accuracy trade-offs. Fairea has been adopted
by subsequent studies Chen et al. (2023a) to carry out the most comprehensive
empirical study to date of 17 state-of-the-art bias mitigation methods for ML
classifiers, evaluated with 11 ML performance metrics, 4 fairness metrics, and
20 types of fairness-performance trade-off assessment, applied to 8 widely-
adopted software decision tasks. Such study reveled that the bias mitigation
methods significantly decrease ML performance in 53% of the studied scenarios
(ranging between 42% 66% according to different ML performance metrics), thus
suggesting the need of methods able to improve the accuracy-fairness trade-off.
Chen et al. (2024) empirically analysed the effectiveness of 11 state-of-the-art
fairness improvement methods when considering multiple protected attributes.
They found that improving fairness for a single protected attribute can largely
decrease fairness regarding unconsidered protected attributes. Intersectional
bias (which encompasses multiple sensitive attributes at the same time) is an
open-challenge in software fairness Sarro (2023). We refer the reader to the
work by Gohar and Cheng (2023) for a survey on this topic.
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2.2 Bias Mitigation Methods

Bias can occur at any stage of the machine learning system development. To
repair bias, researchers have applied bias mitigation methods in three different
stages: pre-processing, in-processing and post-processing (Friedler et al., 2019;
Hort et al., 2022).

Pre-processing methods aim at processing the training data to reduce bias
in the data. Approaches include the reweighing of training data (Kamiran and
Calders, 2012; Calders et al., 2009), editing of labels and features (Calmon
et al., 2017; Feldman et al., 2015), data obfuscation (Zemel et al., 2013),
generation of additional data (Chakraborty et al., 2021) and removal of data
points (Žliobaite et al., 2011; Chakraborty et al., 2020; Chen et al., 2022b).
Pre-processing methods are applied on the training data, which provides the
benefit that they can be applied to any classification algorithm. On the other
hand, this could lead to uncertainty of results, as they do not take the training
algorithms into account.

In-processing methods aim to mitigate bias during training by optimizing
the ML algorithms themselves. These include adversarial learning (Zhang
et al., 2018), fairness constraints (Kamishima et al., 2012; Calders et al., 2013;
Berk et al., 2017), adaptation of split rule for decision trees (Kamiran et al.,
2010), decision boundary (un)fairness (Zafar et al., 2017), latent-unbiased
variables (Calders and Verwer, 2010), hyperparameter tuning (Tizpaz-Niari
et al., 2022). gerrymandering (Kearns et al., 2018), and meta algorithms (Celis
et al., 2019). While in-processing methods are able to impose specific fairness
goals into the training procedure, they are depending on the classification
models they are designed for.

Post-processing methods apply changes, once a classification model has
been trained. Similar to pre-processing algorithms, post-processing methods
can often be applied to any classification algorithm. Moreover, they do not
require access to training data or the learning algorithm. Herein we propose a
novel post-processing method, therefore in the following we discuss the most
common post-processing methods, which are also used as a benchmark in our
experiments (Section 5), and the main difference with our proposed approach.
We refer the reader to the work by Hort et al. (2022) for a comprehensive
survey on the state-of-the-art bias mitigation methods.

Kamiran et al. (Kamiran et al., 2012, 2018) proposed Reject Option based
Classification (ROC), which exploits predictions with high uncertainty. This
follows the intuition that discriminatory decisions are made close to the decision
boundary and therefore with uncertainty. Given a region with low confidence
(e.g., labels close to 0.5 in binary classification), instances belonging to the
unprivileged group receive a favorable label, and instances of the privileged
group an unfavorable label. Instances outside the low confidence region remain
unchanged.

Other than modifying predictions in a post-processing stage, trained classi-
fiers can be addressed as well. Savani et al. (2020) called the post-processing of
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trained classification models “intra-processing” and proposed an approach for
modifying the weights of Neural Networks.

Kamiran et al. (2010) applied leaf relabeling, as a post-processing method on
already trained Decision Trees. Usually, labels of leaves are determined by the
majority class of the training data which is classified by this particular leaf node.
In their debiasing method, leaves are relabeled to reduce discrimination (e.g.,
a leaf that is returning “false” is changed to return “true”), while also keeping
the loss in accuracy minimal. In particular, each leaf node is investigated to
select and relabel the leaf with the highest ratio of discrimination reduction and
accuracy loss. Their approach assumes that, in order to lower discrimination
of DTs, one has to lower accuracy.

Hardt et al. (2016) proposed a post-processing method based on equalized
odds. A classifier is said to satisfy equalized odds when it is independent
of protected attribute and true label (i.e., true positive and false positive
rates across privileged and unprivileged group are equal). Given a trained
classification model, they used linear programming to derive an unbiased one.
Another variant of the equalized odds bias mitigation method has been proposed
by Pleiss et al. (2017). In contrast to the original equalized odds method, they
used calibrated probability estimates of the classification model (e.g., if 100
instances receive p = 0.6, then 60% of them should belong to the favorable
label 1).

Our herein proposed post-processing approach differs from the leaf relabeling
approach proposed by Kamiran et al. (2010), as we do apply changes to the
classification model only if they increase accuracy and reduce bias. In other
words, our approach is the first to deliberately optimize classification models
for accuracy and fairness at the same time, unlike existing methods that are
willing to reduce bias at the cost of accuracy (Berk et al., 2017). Overall, we
apply a search procedure rather than deterministic approaches (Kamiran et al.,
2010, 2012, 2018; Hardt et al., 2016; Pleiss et al., 2017) and we do not assume
that bias reduction has to come with a decrease in accuracy. To the best of our
knowledge our proposal is the first to improve classification models according
to both fairness and accuracy by mutating the classification model itself, rather
than manipulating the training data or the predictions.

2.3 Fairness Measurement

There are two primary methods to measure fairness of classification models:
individual fairness and group fairness (Speicher et al., 2018). While individual
fairness is concerned with an equal treatment of similar individuals (Dwork
et al., 2012), group fairness requires equal treatment of different population
groups. Such groups are divided by protected attributes, such as race, age or
gender. Thereby, one group is said to be privileged if it is more likely to get an
advantageous outcome than another, unprivileged group.

Due to the difficulty of determining the degree of similarity between indi-
viduals (Jacobs and Wallach, 2021), it is common in the literature to focus
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on group fairness metrics. In particular, we investigate three group fairness
metrics (all publicly available in the AIF360 framework (Bellamy et al., 2018))
to measure the fairness of a classification model, which are frequently used
in the domain of software fairness (Zhang and Harman, 2021; Chakraborty
et al., 2020, 2021; Hort et al., 2021) and are usually optimized by existing
bias mitigation methods such as Statistical Parity Difference, Average Odds
Difference, and Equal Opportunity Difference.

Proceeding, we use ŷ to denote a prediction of a classification model. We
use D to denote a group (privileged or unprivileged). We use Pr to denote
probability.

The Statistical Parity Difference (SPD) requires that predictions are made
independently of protected attributes (Zafar et al., 2017). Therefore, favourable
and unfavourable classifications for each demographic group should be identical
over the whole population (Dwork et al., 2012):

SPD = Pr(ŷ = 1|D = unprivileged)

−Pr(ŷ = 1|D = privileged)
(1)

The Average Odds Difference (AOD) averages the differences in False
Positive Rate (FPR) and True Positive Rate (TPR) among privileged and
unprivileged groups (Hardt et al., 2016):

AOD =
1

2
((FPRD=unprivileged − FPRD=privileged)

+(TPRD=unprivileged − TPRD=privileged))

(2)

The Equal Opportunity Difference (EOD) corresponds to the TPR differ-
ence (Hardt et al., 2016):

EOD = TPRD=unprivileged − TPRD=privileged (3)

Following previous work on fairness in SE (Chakraborty et al., 2020; Zhang
and Harman, 2021), we are interested in the absolute values of these metrics.
Thereby, each metric is minimized at zero, indicating that no bias is residing
in a classification model.

3 Proposed Approach

This section introduces the search-based procedure we propose for mutating
classification models to simultaneously improve both accuracy and fairness.
In addition, we describe implementation details for two classification models
(Logistic Regression, Decision Trees) to perform such a procedure.

3.1 Procedure

Our search-based post-processing procedure aims to iteratively mutate a trained
classification model in order to improve both accuracy and fairness at the same
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time. For this purpose, we require a representation of the classification model
that allows changes (“mutation”) to the prediction function. To simplify the
mutation process, we apply mutation incrementally (i.e., repeatedly changing
small aspects of the classifier). Such a procedure is comparable to the local
optimisation algorithm hill climbing. Based on an original solution, hill climbing
evaluates neighboring solutions and selects them only if it improves the original
fitness (Harman et al., 2010). We mutate a trained classification model clf
with the goal to achieve improvements in accuracy and fairness. In this context,
the fitness function measures the accuracy and fairness of clf on a validation
dataset (i.e., a dataset that has not been used during the initial training of clf).
“Accuracy” (acc) refers to the standard accuracy in machine learning, which is
the number of correct predictions against the total number of predictions. To
measure fairness, we use the three fairness metrics introduced in Section 2.3
(SPD, AOD, EOD).

Algorithm 1 outlines our procedure to improve accuracy and fairness of a
trained classification model clf . In line 4, fitness(clf) determines the fitness
of the modified classification model in terms of accuracy (acc′) and a fairness
metric (fair′). In our empirical study we experiment with three different
fairness metrics (see Section 2.3), one at a time. If desired, fitness(clf) can
also be modified to take multiple fairness metrics into account simultaneously.

We only apply a mutation if the accuracy and fairness of the mutated
model (acc′, fair′) are better than the accuracy and fairness of the previous
classification model (acc, fair) (Line 5). If that is not the case, the mutation
is reverted (undo mutation) and the procedure continues until the terminal
condition is met. A mutation of the trained model at each iteration of the
search process that leads to an improvement in one objective (either accuracy
or fairness) will almost certainly change the other objective at the same time.
If the other objective is not worsened, the change is kept; otherwise, the change
is reverted. This effect is accumulated over each iteration.

To show the generalizability of the approach, and in line with previous
work (Kamiran et al., 2012, 2018; Chakraborty et al., 2020), we use the
default configuration, as provided by scikit (Pedregosa et al., 2011) to train
the classification models before applying our post-processing procedure.

Algorithm 1 Post-processing procedure of a trained classification model clf

1: acc, fair ⇐ fitness(clf)
2: while terminal condition not met do
3: clf ⇐ mutate(clf)
4: acc′, fair′ ⇐ fitness(clf)
5: if (acc′ > acc) && (fair′ > fair) then
6: acc⇐ acc′

7: fair ⇐ fair′

8: else
9: clf ⇐ undo mutation(clf)

10: end if
11: end while
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3.2 Logistic Regression

Representation. Logistic Regression (LR) is a linear classifier that can be
used for binary classification. Given training data, LR determines the best
weights for its coefficients. Below, we illustrate the computation of the LR
prediction with four tuneable weights (b0, b1, b2, b3). At first, Equation 4 presents
the computation of predictions with a regular linear regression classifier. To
make a prediction, LR uses this the Linear prediction in a sigmoid function
(Equation 5):

Linear(x1, x2, x3) = b0 + b1x1 + b2x2 + b3x3 (4)

P (Y ) =
1

1 + e−Y
(5)

This prediction function determines the binary label of a 3-dimensional
input (x1, x2, x3). In a binary classification scenario, we treat predictions ≥ 0.5
as label 1, and 0 otherwise.

This shows that the binary classification is determined by n variables
(b0 . . . bn−1). To represent an LR model, we store the n coefficients in an
n-dimensional vector.
Mutation. Given that an LR classification model can be represented by one-
dimensional vector, we mutate single vector elements to create mutated variants
of the model. In particular, we pick an element at random and multiply it by a
value within a range of {−10%, 10%}. We performed an analysis on different
degrees of noise and mutation operators for LR models in Section 5.4.

3.3 Decision Tree

Representation. Decision Trees (DT) are classification models that solve the
classification process by creating tree-like solutions, which create leaves and
branches based on features of the training data. We are interested in binary
DTs. In binary DTs, every interior node (i.e., all nodes except for leaves) have
exactly two child nodes (left and right).
Mutation. We use pruning as a means to mutate DTs. The pruning pro-
cess deletes all the children of an interior node, transforming it into a leaf
node, and has shown to improve the accuracy of DT classification in previous
work (Breiman et al., 1984; Quinlan, 1987; Breslow and Aha, 1997). In par-
ticular, we pick an interior node i at random and treat it as a leaf node by
removing all subjacent child nodes. We choose to use pruning, instead of leaf
relabeling, because preliminary experiments showed that pruning outperforms
leaf relabeling (i.e., Kamiran et al. (2010) used leaf relabeling in combination
with an in-processing method but not in isolation).

4 Experimental Setup

In this section, we describe the experimental design we carry out to assess our
search-based bias repair method for binary classification models (i.e., Logistic
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Regression and Decision Trees). We first introduce the research questions,
followed by the subjects and the experimental procedure used to answer these
questions.

4.1 Research Questions

Our evaluation aims to answer the following research questions:

RQ1: To what extent can the proposed search-based approach be
used to improve both, accuracy and fairness, of binary classification
models?

To answer this question, we apply our post-processing approach to LR
and DTs (Section 3) on four datasets with a total of six protected attributes
(Section 4.2).

The search procedure is guided by accuracy and each of the three fairness
metrics (SPD, AOD, EOD) separately. Therefore, for each classification model,
we perform 3 (fairness metrics) x 6 (datasets) = 18 experiments. For each of
the fairness metrics, we mutate the classification models and measure changes
in accuracy and the particular fairness metric used to guide the search (e.g., we
post-process LR based on accuracy and SPD). We then determine whether the
improvement in accuracy and fairness (as explained in Section 3) achieved by
mutating the classification models are statistically significant, in comparison
to the performance of the default classification model.

Furthermore, we compare optimization results from post-processing with
existing bias mitigation methods:

RQ2: How does the proposed search-based approach compare to
existing bias mitigation methods?

We address this research question in two steps. First, we perform a compar-
ison with post-processing bias mitigation methods, which are applied at the
same stage of the development process as our approach (RQ2.1). Afterwards,
we compare our post-processing approach to pre- and in-processing methods
(RQ2.2).

To answer both questions (RQ2.1 and RQ2.2), we benchmark our approach
against existing and widely-used bias mitigation methods: three post-processing
methods, three pre-processing methods and one in-processing method, which
are all publicly available in the AIF360 framework (Bellamy et al., 2018). In
particular, we applied these existing bias mitigation methods to LR and DTs
on the same set of problems (i.e., the four datasets used also for RQ1 and RQ3)
in order to compare their fairness-accuracy trade-off with the one achieved by
our proposed approach. A description of the benchmarking bias mitigation
methods is provided in Section 4.3, whereas the datasets used are described in
Section 4.2.

While the objectives considered during the optimization procedure are im-
proved, this has shown to carry detrimental effects on other objectives (Ferrucci
et al., 2010; Chakraborty et al., 2020). Therefore, we determine the impact
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optimization for one fairness metric has on the other two fairness metrics,
which have not been considered during the optimization procedure:
RQ3: What is the impact of post-processing guided by a single fair-
ness metric on other fairness metrics?

To answer this question, we apply our post-processing method on LR and
DTs. While optimizing for each of the three fairness metrics, we measure
changes of the other two. We are then able to compare the fairness metrics
before and after the optimization process, and visualize changes using boxplots.
Moreover, we can determine whether there are statistically significant changes
to “untouched” fairness metrics, which are not optimized for.

Moreover, we perform additional experiments to gain insights on the impor-
tance of parameters when applying our post-processing method (i.e., terminal
condition and mutation operations), and the performance of advanced binary
classification models (e.g., neural networks) in comparison to Logistic Regres-
sion and Decision Tree classifiers. The investigation of parameter choices is
addressed in Section 5.4, advanced classification models are investigated in
Section 5.5.

4.2 Datasets

We perform our experiments on four real-world datasets used in previous
software fairness work (Chakraborty et al., 2020; Zhang and Harman, 2021)
with a total of six protected attributes.

The Adult Census Income (Adult) (Kohav, [n.d.]) contains financial and
demographic information about individuals from the 1994 U.S. census. The
privileged and unprivileged groups are distinguished by whether their income
is above 50 thousand dollars a year.

The Bank Marketing (Bank) (Moro et al., 2014) dataset contains details
of a direct marketing campaign performed by a Portuguese banking institution.
Predictions are made to determine whether potential clients are likely to
subscribe to a term deposit after receiving a phone call. The dataset also
includes information on the education and type of job of individuals.

The Correctional Offender Management Profiling for Alternative Sanctions
(COMPAS) (propublica, [n.d.]) dataset contains the criminal history and
demographic information of offenders in Broward County, Florida. To indicate
whether a previous offender is likely to re-offend, they receive a recidivism
label.

The Medical Expenditure Panel Survey (MEPS19) represents a large scale
survey of families and individuals, their medical providers, and employers across
the United States.3 The favourable label is determined by “Utilization” (i.e.,
how frequently individuals frequented medical providers).

In Table 1, we provide the following information about the four datasets:
number of rows and features, the favourable label and majority class. In

3 https://meps.ahrq.gov/mepsweb/
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Table 1: Datasets used in our empirical study

Dataset Size Attributes Favourable Label Majority Label Protected Privileged - Unprivileged

Adult 48,842 14 1 (income >50k) 0 (75%) Sex Male - female
Race White - non white

COMPAS 7,214 28 0 (No recid) 0 (54%) Sex Female - male
Race Caucasian - not Caucasian

Bank 41,188 20 1 (yes) 0 (87%) Age ≥ 25 - < 25

MEPS19 15,830 138 1 (≥ 10 visits) 0 (83%) Race White - non-white

addition, we list the protected attributes for each dataset (as provided by
the AIF360 framework (Bellamy et al., 2018)), which are investigated in our
experiments, and the respective privileged and unprivileged groups for each
protected attribute.

4.3 Benchmark Bias Mitigation Methods

As our proposed method belongs to the category of post-processing methods,
we compare it with all the state-of-art post-processing bias mitigation methods
made publicly available in the AIF360 framework (Bellamy et al., 2018), as
follows (Section 2.2):

– Reject Option Classification (ROC) (Kamiran et al., 2012, 2018);
– Equalized odds (EO) (Hardt et al., 2016);
– Calibrated Equalized Odds (CO) (Pleiss et al., 2017).

AIF360 (Bellamy et al., 2018) provides ROC and CO with the choice of three
different fairness metrics to guide the bias mitigation procedure (Section 2.3).
ROC can be applied with SPD, AOD, and EOD. CO can be applied with False
Negative rate (FNR), False Positive Rate (FPR), and a “weighed” combination
of both. We apply both, ROC and CO, with each of the available fairness
metrics. EO does not provide choices for fairness metrics to users.

While our focus lies on the empirical evaluation of our post-processing
approach with approaches of the same type, we also consider a comparison with
pre- and in-processing methods (RQ2-2, Section 5.5). In particular, we compare
our approach to the following pre-processing and in-processing methods:

– Optimized Pre-processing (OP) (Calmon et al., 2017): Probabilistic trans-
formation of features and labels in the dataset.

– Learning Fair Representation (LFR) (Zemel et al., 2013): Intermediate
representation learning to obfuscate protected attributes.

– Reweighing (RW) (Kamiran and Calders, 2012; Calders et al., 2009):
Reweighing the importance (weigh) of instances from the privileged and
unprivileged group in the dataset.

– Exponentiated gradient reduction (RED) (Agarwal et al., 2018): Two player
game to find the best randomized classifier under fairness constraints.

The three pre-processing methods (OP, LFR, RW) are classification model-
agnostic and can be easily be applied Logistic Regression and Decision Tree
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Fig. 1: Empirical evaluation of a single data split.

models (i.e., training data can be changed independent of the classification
model used). Whereas, in order to apply RED, the in-processing approach
proposed by Agarwal et al. (2018), one needs to provide a classification model
(Logistic Regression or Decision Tree) and a fairness notion. In our case, we ap-
ply RED with three different fairness notions: “DemographicParity” (REDDP ),
“EqualizedOdds” (REDEO), “TruePositiveRate” (REDTPR). These three no-
tions coincide with our evaluation metrics, SPD, AOD and EOD, respectively.

4.4 Validation and Evaluation Criteria

To validate the effectiveness of our post-processing approach to improve ac-
curacy and fairness of binary classification models, we apply it to LR and
DT. Since our optimization approach applies random mutations, we expect
variation in the results. Figure 1 illustrates the empirical evaluation procedure
of our method for a single datasplit. At first, we split the data in three sets:
training (70%), validation (15%), test (15%).4 To mitigate variation, we apply
each bias mitigation method, including our newly proposed approach on 50
different data splits.

The training data is used to create a classifier which we can post-process.
Once a classifier is trained (i.e., Logistic Regression or Decision Tree), we
apply our optimization approach 30 times (Step 2).5 To then determine the
performance (accuracy and fairness) of our approach on a single data split, we
compute the Pareto-optimal set6 based on the performance on the validation set.

4 We have performed a comparison of different data splits (i.e., it is beneficial to train with
more data by combining train and validation) set but could not find systematic advantages.
Further details can be found in our online appendix Hort et al. (2023c).

5 There is no particular reason for choosing to run it 30 times, this number can be adjusted
as one sees fit. Ideally the more runs the better, in order to cater for the inherent stochastic
nature of the approach, yet limited computational resources or time may limit the number
of repetitions performed. In practice, only one classification model can be used, therefore
one can apply our approach multiple times and select a model from the Pareto-front, or use
the entire search budget on building a single optimal classification model.

6 This is the set of solutions that are non-dominated to each other but are superior to the
rest of solutions in the search space. In other words each solution of the Pareto-set includes



Fairness and Accuracy in Decision-making Software 15

Once we obtain the Pareto-set of optimized classification models based on their
performance on the validation set, we average their performance on the test
set. Performance on the test set (i.e., accuracy and fairness) is used to compare
different bias mitigation methods and determine their effectiveness. Each run
of our optimization approach is limited to 2, 500 iterations (terminal condition,
Algorithm 1). The existing post-processing methods are deterministic, and
therefore applied only once for each data split.

To assess the effectiveness of our approach (RQ1) and compare it with
existing bias mitigation methods (RQ2), we consider both summary statistics
(i.e., average accuracy and fairness), statistical significance tests and effect size
measures, and Pareto-optimality. Furthermore, we use boxplots to visualize
the impact of optimizing accuracy and one fairness metric on the other two
fairness metrics (RQ3).

Pareto-optimality states that a solution a is not worse in all objectives
than another solution b and better in at least one (Harman et al., 2010). We
use Pareto-optimality to both measure how often our approach dominates the
default classification model or is Pareto-optimal, and to plot the set of solutions
found to be non-dominated (and therefore equally viable) with respect to the
state-of-the-art (RQs1-2). In the case where there are two objectives, such as
ours, this leads to a two dimensional Pareto surface.

To determine whether the differences in the results achieved by all ap-
proaches are statistical significant, we use the Wilcoxon Signed-Rank test,
which is a non-parametric test that makes no assumptions about underlying
data distribution (Wilcoxon, 1992). We set the confidence limit, α, at 0.05 and
applied the Bonferroni correction for multiple hypotheses testing (α/K, where
K is the number of hypotheses).7 This correction is the most conservative of
all corrections and its usage allows us to avoid the risk of Type I errors (i.e.,
incorrectly rejecting the Null Hypothesis and claiming predictability without
strong evidence). In particular, depending on the RQ, we test the following
null hypothesis:
(RQ1) H0: The fairness and accuracy achieved by approachx is not improved
with respect to the default classification model. The alternative hypothesis is as
follows: H1: The fairness and accuracy achieved by approachx improves with
respect to the default classification model. In this context, “improved” means
that the accuracy is increased and fairness metric values are decreased (e.g.,
a SPD of 0 indicates that there is no unequal treatment of privileged and
unprivileged groups).
(RQ3) H0: Optimizing for accuracy and fairness metric m1 does not improve
fairness metric m2 with respect to the default classification model. The alterna-
tive hypothesis is as follows: H1: Optimizing for accuracy and fairness metric
m1 improves fairness metric m2 with respect to the default classification model.

at least one objective inferior to another solution in that Pareto-set, although both solutions
are superior to others in the rest of the search space with respect to all objectives.

7 Here we use K = 12, for the two hypothesis and the six datasets. In Tables 2 and 3, we
report the original p-value (i.e., with no correction) so that a reader could assess the results
using a different correction, if interested.
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For this RQ, we summarise the results of the Wilcoxon tests by counting the
number of win-tie-loss as follows: p–value<0.01 (win), p–value>0.99 (loss),
and 0.01≤ p–value ≥0.99 (tie), as done in previous work (Sarro et al., 2017;
Kocaguneli et al., 2011; Sarro et al., 2018; Sarro and Petrozziello, 2018).

In addition to evaluating statistical significance, we measure the effect
size based on the Vargha and Delaney’s Â12 non-parametric measure (Vargha
and Delaney, 2000), which does not require that the data is normally dis-
tributed (Arcuri and Briand, 2014). The Â12 measure compares an algorithm
A with another algorithm B, to determine the probability that A performs
better than B with respect to a performance measure M :

Â12 = (R1/m− (m+ 1)/2)/n (6)

In this formula, m and n represent the number of observations made with
algorithm A and B respectively; R1 denotes the rank sum of observations made
with A. If A performs better than B, Â12 can display one of the following effect
sizes: Â12 ≥ 0.72 (large), 0.64 < Â12 < 0.72 (medium), 0.56 < Â12 < 0.64
(small), although these thresholds are not definitive (Sarro et al., 2016).

4.5 Threats to Validity

The internal validity of our study relies in the confidence that the experimental
results we obtained are trustworthy and correct. To alleviate possible threats
to the internal validity, we applied our post-processing method and existing
bias mitigation methods 50 times, under different train/validation/test splits.
This allowed us to use statistical significance tests to further assess our results
and findings. We have used traditional measures used in the software fairness
literature to assess ML accuracy, while we recognise alternative measures could
be used to take into account data imbalance (Chen et al., 2023b; Moussa and
Sarro, 2022).

Threats to external validity related to generalizability of our results, are
primarily concerned with the datasets, approaches and metrics we investigated.
To mitigate this threat we have considered in this study all datasets publicly
available which have been previously used in the literature to solve the same
problem. Using more data in the future will further increase the generalizability
of our results. Furthermore, we have successfully applied our post-processing
method on two inherently different classification models (Logistic Regression,
Decision Trees), which strengthens the confidence that our approach could be
applied to other binary classifiers. We have also explored all state-of-the-art
post-processing debiasing methods in addition to three pre-processing and
one in-processing method available from the AIF360 framework (Bellamy
et al., 2018) (version 0.3.0), which is publicly available, to strengthen the
generalizability and reproducibility of our work.

To mitigate possible threats to construct validity, and support the appli-
cability and generalizability of our approach, and allow for the replication
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Table 2: RQ1-Logistic Regression: Average accuracy and fairness of non-
dominated solutions over 50 different data splits (i.e., for each data split,
we select the non-dominated solutions and average their performance on the
test set). Bold values indicate improvements over the default classification
model. The p-value of the Wilcoxon Signed-Rank test comparing each approach
with the default Logistic Regression model, is given in brackets for each metric.
Colors are used to show the effect size ( large , medium , small ).

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

Accuracy

LRdefault 0.833 0.833 0.677 0.677 0.899 0.838
LRSPD 0.845 (0.00) 0.845 (0.00) 0.676 (0.22) 0.675 (0.31) 0.900 (0.01) 0.835 (0.00)
LRAOD 0.846 (0.00) 0.845 (0.00) 0.675 (0.29) 0.675 (0.31) 0.900 (0.06) 0.834 (0.00)
LREOD 0.846 (0.00) 0.845 (0.00) 0.675 (0.20) 0.676 (0.72) 0.900 (0.05) 0.834 (0.00)

SPD
LRdefault 0.191 0.034 0.279 0.173 0.074 0.123
LRSPD 0.171 (0.00) 0.086 (0.00) 0.199 (0.00) 0.157 (0.00) 0.074 (0.59) 0.107 (0.00)

AOD
LRdefault 0.120 0.044 0.254 0.150 0.051 0.125
LRAOD 0.083 (0.00) 0.041 (0.42) 0.178 (0.00) 0.133 (0.00) 0.054 (0.20) 0.111 (0.00)

EOD
LRdefault 0.150 0.078 0.194 0.094 0.076 0.205
LREOD 0.088 (0.00) 0.049 (0.01) 0.115 (0.00) 0.079 (0.00) 0.082 (0.33) 0.175 (0.00)

Table 3: RQ1-Decision Tree: Average accuracy and fairness of non-dominated
solutions over 50 different data splits (i.e., for each data split, we select the
non-dominated solutions and average their performance on the test set). Bold
values indicate improvements over the default classification model. The p-value
of the Wilcoxon Signed-Rank test comparing each approach with the default
Decision Tree model, is given in brackets for each metric. Colors are used to
show the effect size ( large , medium , small ).

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

Accuracy

DTdefault 0.817 0.817 0.622 0.622 0.877 0.760
DTSPD 0.836 (0.00) 0.841 (0.00) 0.645 (0.00) 0.638 (0.00) 0.892 (0.00) 0.798 (0.00)
DTAOD 0.838 (0.00) 0.838 (0.00) 0.648 (0.00) 0.640 (0.00) 0.889 (0.00) 0.798 (0.00)
DTEOD 0.832 (0.00) 0.831 (0.00) 0.646 (0.00) 0.642 (0.00) 0.887 (0.00) 0.791 (0.00)

SPD
DTdefault 0.180 0.085 0.129 0.114 0.107 0.128
DTSPD 0.110 (0.00) 0.060 (0.00) 0.083 (0.00) 0.091 (0.00) 0.088 (0.00) 0.047 (0.00)

AOD
DTdefault 0.073 0.035 0.107 0.098 0.068 0.091
DTAOD 0.032 (0.00) 0.028 (0.00) 0.075 (0.00) 0.081 (0.00) 0.057 (0.00) 0.036 (0.00)

EOD
DTdefault 0.056 0.034 0.089 0.064 0.077 0.093
DTEOD 0.041 (0.00) 0.034 (0.70) 0.057 (0.00) 0.062 (0.81) 0.081 (0.61) 0.022 (0.00)

and extension of our work, we have made our scripts and results publicly
available Hort et al. (2023c).

5 Results

This section presents the results of our experiments to answer the research
questions explained in Section 4.1.
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5.1 RQ1. Fairness-Accuracy Improvement

In the first research question, we investigate whether our post-processing ap-
proach is able to improve both fairness and accuracy when applied to binary
classification models (namely LR and DT). The baseline considered is the
default classification model. We apply our approach on four datasets, as out-
lined in Section 4.4. In total, we apply post-processing with three different
configurations, to optimize for accuracy and one of the three fairness metric at
a time. We will call those configurations DTSPD, DTAOD, DTEOD, LRSPD,
LRAOD, LREOD to determine the classification model and the fairness met-
ric considered during optimization. These configurations are applied to four
datasets on 50 train/validation/test splits and repeated 30 times. Table 2
and Table 3 show these results for Logistic Regression and Decision Trees
respectively. These tables show the results of the default classification model
and the three optimization configurations.

We can see that our post-processing approach is able to improve the accuracy
of the two classification models (LR and DT) in 27 out of 36 cases. In the half of
the cases the accuracy of LR is statistically significant better (6 out of 18 cases)
or comparable (3 out of 18 cases) with respect to the default model, while in
6 out of 18 cases it is reduced although no statistical significant difference is
observed. In the remaining three cases, all on the MEPS19 datasets, accuracy
is statistically worse with a small effect size. All the 18 out of 18 cases improve
the accuracy of DT, all of which are statistically significant with large effect
sizes.

When investigating the impact of our post-processing approach on each of
the three fairness metrics (i.e., mutation is applied if the particular fairness
metric and accuracy are improved), we compare the fairness of the default
classification model with the configuration to optimize for that particular metric
(e.g., we compare the SPD of the default LR with the SPD achieved by LRSPD).
Therefore, instead of 18 cases for LR and DT, we have six comparisons for
each metric.

For each of the three fairness metrics (SPD, AOD, EOD) our post-processing
approach is able to improve fairness on 5 out of 6 datasets on LR. LRSPD is not
able to achieve SPD improvements on the Adult dataset (protected attribute
= “race”), LRAOD and LREOD are not able to achieve fairness improvements
on the Bank dataset. Among the 15 out of 18 cases that improve fairness on
LR, 11 are statistically significant, with six of those having large effect sizes.
Furthermore, it can be noted that the instances where our approach is not
able to improve fairness, already have a low bias score. According to the online
tool of the AIF360 framework (Bellamy et al., 2018), values ≤ 0.1 can be
seen as fair, when investigating SPD, AOD and EOD.8 Applied to DTs, our
post-processing approach improves fairness for 16 out of 18 cases. In particular,
in 6 out of 6 cases DTSPD and DTAOD achieve statistically significant fairness
improvements on their respective fairness metric. In 3 out of 6 cases, DTEOD

8 https://aif360.mybluemix.net/
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Table 4: RQ1: Comparison of each individual run of our approach (30 runs over
50 datasplits) against the default classification model. For each dataset and
metric, we measure the percentage of runs that: dominate the default model -
are Pareto-optimal - are dominated by the default model.

Adult Compas Bank Meps19
Sex Race Sex Race Age Race Σ

LR
SPD 59-41-0 0-98-2 36-57-7 38-47-16 37-50-14 25-68-8 32-60-8
AOD 65-34-1 50-50-0 36-54-10 37-48-16 26-50-24 15-65-19 38-50-12
EOD 71-29-0 61-39-0 37-58-6 41-44-15 31-49-19 17-72-11 43-48-8

Σ 65-35-0 37-62-1 36-56-7 39-46-16 31-50-19 19-68-13 38-53-9

DT
SPD 100-0-0 100-0-0 91-9-0 76-23-2 69-31-0 99-1-0 89-11-0
AOD 100-1-0 71-29-0 85-14-1 69-31-1 63-37-0 95-5-0 80-19-0
EOD 78-22-0 54-46-0 78-20-2 47-52-1 43-57-0 89-11-0 65-35-0

Σ 92-8-0 75-25-0 85-15-1 64-35-1 58-42-0 94-6-0 78-22-0

achieves statistically significant improvements. In the remaining two cases (i.e.,
EOD on the Adult-race and Bank-Age datasets), our approach is not able to
significantly improve fairness, likely because the default model already shows a
low bias (≤ 0.1).

Overall, the three post-processing configurations achieve improvements in
both accuracy and fairness in 22 out of 36 cases, and improvements in at least
one of the two (i.e., either accuracy and fairness) in the remaining 14 out of 36
cases. Notably, our post-processing approach improves accuracy and fairness
of DTs in 16 out of 18 cases.

In addition to comparing the average performance of our optimization
approach for each data-split (i.e., we average accuracy and fairness of all
solutions in the Pareto-front), we perform a comparison of each solution in the
Pareto-front with the default classification model. Table 4 shows the results.
For each combination of datasets and metric optimized by our approach, we
compute the percentage of solutions that: dominate the default model, are
Pareto-optimal, are dominated by the default model. This comparison (e.g.,
do solutions in the Pareto-front dominate the default classification model?)
is performed for each data-split and weighted accordingly, such that each
data-split has the same contribution to the results (e.g., a data-split with 10
solutions in the Pareto-front is treated equally as a data-split with 2 solutions in
the Pareto-front). Our post-processing methods applied on Logistic Regression
achieves comparable or better performance than the default model in 91% of
the cases across all datasets studied, and, specifically, it dominates the default
model in 38% of the cases and is dominated in only 9% of the cases. This shows
that our approach is a useful tool for optimizing LR models (i.e., developers
are either able to choose a strictly better model, or models with competitive
fairness-accuracy trade-offs). When we apply our approach to DTs, we observe
an even higher performance improvement: It dominates the default DT models
in 78% of the cases and not dominated in the remaining cases.
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Fig. 2: RQ2: Comparison of our proposed approach against existing bias
mitigation methods and default classification models based on Pareto-optimality.
The figure shows six exemplary comparisons for LR and SPD.

Answer to RQ1: In 22 out of 36 cases (61%), our search-based approach
is able to improve both, fairness and accuracy of Logistic Regression
and Decision Trees with respect to the default model when considering
all datasets and fairness metrics. Notably, this happens in 16 out of 18
cases when applying our optimization approach to Decision Trees, with
15 of these cases achieving statistically significant improvements with
large and medium effect sizes in the vast majority of case (14 out of
15).

5.2 RQ2. Comparison to Existing Bias Mitigation Methods

5.2.1 RQ2-1. Comparison to Post-Processing Methods

To answer RQ2.1, we compare our post-processing method against three existing
post-processing bias mitigation methods (Section 4.3) applied to LR and DT
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Table 5: RQ2: Frequency of bias mitigation methods in the Pareto-front. Each
combination of bias mitigation method and fairness metric is evaluated on six
datasets.

Logistic Regression Decision Tree
Our CO ROC EO Our CO ROC EO

SPD 6 3 3 6 6 0 2 0
AOD 6 2 2 6 6 0 2 0
EOD 6 2 4 5 6 0 2 1

Σ 18/18 7/18 9/18 17/18 18/18 0/18 6/18 1/18

on the same datasets (Adult, COMPAS, Bank, MEPS19) by using identical
train/validation/test splits, as described in Section 4. The mean performance
of these methods over 50 data splits, and of our post-processing method, are
shown in Figure 2. While Figure 2 only includes six cases for LR and measuring
SPD, the remaining results for other metrics and DTs are available in our online
appendix Hort et al. (2023c). In each sub-figure, we show the performance of
every non-dominated bias mitigation method on the respective dataset and
fairness metric. A summary on how often each bias mitigation method is part
of the Pareto-front is provided in Table 5.

When comparing the accuracy of classification models achieved after apply-
ing our post-processing method against the existing bias mitigation methods,
we observe that all of the existing bias mitigation methods have a lower accu-
racy. Moreover, all of the existing bias mitigation methods reduce the accuracy
of the default classification model, thereby conforming to the fairness-accuracy
trade-off. On the other end, our approach, which takes into account accuracy
in the bias mitigation process, is always able to generate a widely applicable
solution (i.e., our approach always produces at least a solution belonging to
each of 36 Pareto-fronts, and therefore is never dominated by any of the existing
methods).

We can observe a difference in performance of our approach when applied
to LR and DT. While our approach, applied to LR, is able to outperform some
of the existing bias mitigation methods on the three fairness metrics (CO and
ROC), it is only able to dominate EO in 1 out of 18 cases (Bank-age EOD).
In the remaining 17 cases, EO has a lower accuracy than our approach while
improving fairness to a higher degree. On the other end, when applying our
post-processing approach to DTs, it not only produces solutions that dominate
the default classification model (as seen in RQ1), but also all investigated bias
mitigation methods in 12 out of 18 cases. Furthermore, for DT, our approach
outperforms existing bias mitigation methods on the three fairness metrics, in
addition to achieving the highest accuracy. In particular, our approach achieves
the lowest bias on all three fairness metrics for the Adult, Bank and MEPS19
datasets. Only ROC is able to achieve a lower level of bias for the COMPAS
dataset in 6 out of 6 cases, and EO in 1 out of 6 cases. This may be due to the
fact that COMPAS is the smallest of the datasets we investigate herein.
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Table 6: RQ2-2: Performance comparison with pre-processing (LFR, OP, RW)
and in-processing (RED) methods for Logistic Regression. The best performance
for each metric is highlighted in bold.

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

ACC

LRdefault 0.833 0.833 0.677 0.677 0.899 0.838
LRSPD 0.845 0.845 0.676 0.675 0.900 0.835
LRAOD 0.846 0.845 0.675 0.675 0.900 0.834
LREOD 0.846 0.845 0.675 0.676 0.900 0.834
LFR 0.773 0.770 0.549 0.549 0.878 0.795
OP 0.794 0.803 0.665 0.659
REW 0.789 0.803 0.661 0.656 0.900 0.835
REDDP 0.783 0.802 0.658 0.651 0.899 0.826
REDEO 0.789 0.803 0.655 0.643 0.897 0.834
REDTPR 0.789 0.803 0.658 0.652 0.899 0.833

SPD

LRdefault 0.191 0.034 0.279 0.173 0.074 0.123
LRSPD 0.171 0.086 0.199 0.157 0.074 0.107
LFR 0.111 0.069 0.063 0.075 0.032 0.036
OP 0.115 0.047 0.159 0.124
REW 0.066 0.041 0.097 0.060 0.031 0.055
REDDP 0.017 0.014 0.043 0.038 0.023 0.019

AOD

LRdefault 0.120 0.044 0.254 0.150 0.051 0.125
LRAOD 0.083 0.041 0.178 0.133 0.054 0.111
LFR 0.115 0.087 0.065 0.076 0.052 0.037
OP 0.094 0.025 0.126 0.096
REW 0.014 0.022 0.087 0.053 0.043 0.029
REDEO 0.019 0.025 0.061 0.044 0.050 0.032

EOD

LRdefault 0.150 0.078 0.194 0.094 0.076 0.205
LREOD 0.088 0.049 0.115 0.079 0.082 0.175
LFR 0.171 0.137 0.057 0.065 0.084 0.057
OP 0.151 0.036 0.082 0.072
REW 0.021 0.033 0.054 0.043 0.073 0.045
REDTPR 0.033 0.042 0.063 0.049 0.075 0.059

Answer to RQ2.1: Our approach provides Pareto-optimal solutions when
applied to both Decision Trees and Logistic Regression for each of the
datasets investigated in our study. In particular, it achieves the highest
accuracy with respect to the existing bias mitigation methods in 100%
of the cases and the highest fairness in 33% of the cases. Notably,
our approach provides the best performance when applied to Decision
Trees, as in this case it generates solutions that strictly dominate those
provided by the existing bias mitigation methods in 12 out of 18 cases
(i.e., it achieves both higher accuracy and lower bias), and achieves a
higher accuracy in the remaining 6 out of 18 cases.
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Table 7: RQ2-2: Performance comparison with pre-processing (LFR, OP, RW)
and in-processing (RED) methods for Decision Trees. The best performance
for each metric is highlighted in bold.

Adult Compas Bank Meps19
Sex Race Sex Race Age Race

ACC

DTdefault 0.817 0.817 0.622 0.622 0.877 0.760
DTSPD 0.836 0.841 0.645 0.638 0.892 0.798
DTAOD 0.838 0.838 0.648 0.640 0.889 0.798
DTEOD 0.832 0.831 0.646 0.642 0.887 0.791
LFR 0.747 0.745 0.569 0.571 0.829 0.738
OP 0.786 0.799 0.658 0.655
REW 0.787 0.801 0.658 0.652 0.879 0.760
REDDP 0.784 0.801 0.656 0.648 0.877 0.764
REDEO 0.790 0.802 0.658 0.647 0.876 0.758
REDTPR 0.790 0.802 0.659 0.650 0.878 0.759

SPD

DTdefault 0.180 0.085 0.129 0.114 0.107 0.128
DTSPD 0.110 0.060 0.083 0.091 0.088 0.047
LFR 0.167 0.075 0.096 0.066 0.073 0.100
OP 0.068 0.023 0.104 0.136
REW 0.056 0.014 0.071 0.091 0.104 0.102
REDDP 0.018 0.014 0.040 0.038 0.027 0.037

AOD

DTdefault 0.073 0.035 0.107 0.098 0.068 0.091
DTAOD 0.032 0.028 0.075 0.081 0.057 0.036
LFR 0.137 0.087 0.093 0.067 0.083 0.087
OP 0.050 0.042 0.087 0.108
REW 0.032 0.048 0.070 0.081 0.068 0.068
REDEO 0.020 0.023 0.056 0.048 0.070 0.087

EOD

DT-default 0.056 0.034 0.089 0.064 0.077 0.093
DTEOD 0.041 0.034 0.057 0.062 0.081 0.022
LFR 0.170 0.140 0.074 0.053 0.097 0.098
OP 0.081 0.066 0.058 0.085
REW 0.049 0.078 0.061 0.070 0.077 0.070
REDTPR 0.032 0.039 0.039 0.042 0.083 0.089

5.2.2 RQ2-2. Comparison to Pre- and In-Processing Methods

To answer RQ2-2, we compare our post-processing approach with available
pre- and in-processing bias mitigation methods. In particular, we use three pre-
processing methods (LFR, OP, REW) and one in-processing method (RED),
under consideration of three fairness metrics (REDDP , REDEO, REDTPR),
for comparison. Table 6 shows the performance of the bias mitigation methods
when applied to Logistic Regression models and Table 7 shows results for
Decision Trees. Due to the dimensionality of data (number of features and
instances in the dataset), OP could not be applied to the Bank and Meps19
datasets.

The lowest bias for LR models is achieved by REW (pre-processing) and
RED (in-processing), while the highest accuracy is achieved by our post-
processing approach and the original LR model (Table 6). For DTs, RED
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achieves the lowest degree of bias in 13 out of 18 cases. Our post-processing
approach is able to achieve the lowest degree of bias in 4 out 18 cases and
the highest accuracy in 4 out of 6 cases. The pre-processing method LFR is
never among the best performing methods for any of the four metrics (i.e.,
accuracy or fairness), while OP achieves the highest accuracy once for DTs
on the COMPAS dataset. One reason that could explain the ability of RED
to reduce bias further than pre-processing methods is that RED takes related
fairness metrics into account. The pre-processing methods either re-balance the
data or obfuscate sensitive information. These approaches are intuitive with
regard to the overall goal of achieving fairness but do not coincide with the
three measured fairness metrics.

Table 8 investigates the relation of the bias mitigation methods in a multi-
objective setting, i.e., how often is our approach better than existing methods,
how often is there a trade-off between accuracy and fairness, and how often is our
method worse. From the results, we observe that our approach is comparable,
if not better, than LFR and OP over all datasets and the two classification
models (LR and DT). The same holds for RED applied to LR. However, REW
tends to perform better than our approach for LR (pareto-optimal in 12 cases
and better in 6).

Overall, we can observe that in the majority of the cases for LR (52
out of 66), our approach is pareto-optimal to existing pre- and in-processing
approaches, indicating that there is a trade-off between fairness and accuracy.
For practitioners, it would be important to consider more than one solutions to
choose from, in particular those provided by our approach and REW, in order
to select the best models with regards to specific datasets and metrics. For
DT classifiers, we observe that our approach is strictly better than pre- and
in-processing methods in 33 out of 66 cases, showing that there are performance
difference among classification models. However, it is still beneficial to consider
methods such as REW and RED, as there are cases in which they provide
better results than our approach (i.e., they are strictly dominating).

In accordance with current findings (Pessach and Shmueli, 2022), there is
no single method that is the most suitable over all considered cases. Moreover,
there is no clear preference on which stage bias mitigation methods should be
applied. Rather, one has to take the dataset and fairness metric into account
when selecting bias mitigation methods.

Answer to RQ2.2: Our approach provides Pareto-optimal or better
solutions than pre- and in-processing methods in 60 out of 66 cases for
Logistic Regression and 55 out of 66 cases for Decision Trees. LFR and
OP are never better than our approach for both objectives (accuracy
and fairness), while being strictly worse in 28 out of 60 cases.
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Table 8: RQ2-2: Comparison of our approach with pre- and in-processing
methods in terms of domination criteria. For each of the four methods (three pre-
processing, one in-processing) we provide results over the 6 datasets and three
metrics as follows: our method dominates the existing method - both methods
are pareto-optimal - our method is dominated. We determine domination with
regard to accuracy and each of the three fairness metrics separately.

Logistic Regression Decision Tree
SPD AOD EOD Σ SPD AOD EOD Σ

LFR 0-6-0 2-4-0 3-3-0 5-13-0 5-1-0 5-1-0 5-1-0 15-3-0
OP 0-4-0 1-3-0 1-3-0 2-10-0 0-4-0 4-0-0 2-2-0 6-6-0
REW 0-4-2 0-4-2 0-4-2 0-12-6 2-2-2 4-0-2 3-2-1 9-4-5
RED 0-6-0 1-5-0 0-6-0 1-17-0 0-4-2 0-4-2 3-1-2 3-9-6

Σ 0-20-2 4-16-2 4-16-2 8-52-6 7-11-4 13-5-4 13-6-3 33-22-11

5.3 RQ3. Impact on Fairness Metrics

In RQ3, we investigate the impact of optimizing for one fairness metric on the
other two (e.g., if we optimize for accuracy and AOD, how do SPD and EOD
change?). Therefore, we apply the three configurations of our post-processing
approach on the four datasets and measure every kind of fairness metric at
the end of the optimization procedure. In accordance with RQ1 and RQ2, we
investigate the performance over 50 different train/validation/test splits.

Figure 3 shows the results of the optimization results. For each dataset, we
use boxplots to show the default performance of the classification model, as
well as the performance after optimization with each of the three configurations.
Thereby, three colors represent optimization with one of the fairness metrics,
and one color represents the fairness of the default classification model.

Given the results, we can see that the fairness achieved by an optimized, post-
processed classification model behaves similarly, independent of the fairness
metric used for optimization. For example, this can be seen on the Adult-
sex dataset for LR and DT. Regardless of the fairness metric considered
during optimization, the average AOD of all three configurations is better
than the default classification model. Such a behaviour (all three optimization
configurations achieve improvements on a fairness metric) happens in 28 out
of 36 cases. There is one case (Adult-race for LR) in which none of the three
search configurations achieve improvements on SPD (neither LRSPD, LRAOD

nor LREOD).

In the remaining 7 out of 36 cases, there are differences when using different
optimization configurations. One example for this is the Bank-age datasets for
LR. Only LRSPD achieves improvements over the default LR model in SPD,
AOD and EOD. LRAOD and LREOD are not able to improve any fairness
metric (neither SPD, AOD or EOD).

To evaluate the overall level of bias mitigation achieved by optimization on
a different fairness metric, we summarize the statistical significance differences
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Fig. 3: RQ3: Summary of bias values (the lower the better) achieved by the
three different post-processing settings (SPD, AOD, EOD) and the default
classification models. Boxplots are grouped based on the fairness metric they
measure.
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Table 9: RQ3: Win-tie-loss summary of the Wilcoxon tests when optimizing
for one fairness metric and measuring the other two (e.g., use SPD during
optimization and test on EOD) in comparison to the default classification
model.

SPD AOD EOD Σ
AOD EOD SPD EOD SPD AOD

LR 4-2-0 4-1-1 3-3-0 4-2-0 3-3-0 4-2-0 22-13-1
DT 5-1-0 3-2-1 6-0-0 3-3-0 3-2-1 3-3-0 23-11-2

we found over the four datasets in Table 9. In particular, we investigate whether
significant improvements over the default classification models are achieved
(win), whether no significant differences can be found (tie), or whether the
default classification model has a statistically significant lower bias than the
optimized model (loss). Combining the results for LR and DT, there are
45 wins, 24 ties and 3 losses. This indicates, that while our post-processing
approach optimizes for one fairness metric, it can positively effect other metrics
as well.

Answer to RQ3: Based on the three investigated fairness metrics (SPD,
AOD, EOD), fairness improvements are achieved independently of the
metric used during optimization. In 78% of the cases (28 out of 36),
fairness metrics are improved by all three configurations (e.g., SPD
on the Adult-sex dataset is improved by LRSPD, LRAOD, LREOD).
We do not observe any dramatic detrimental effect, as in 96% of the
cases (69 out of 72) there is no performance deterioration in “untouched”
fairness metrics, which are not optimized for. Among those, in 63%
of the cases (45 out of 72), our approach even leads to statistically
significant improvements.

5.4 Parameter Analysis for Logistic Regression

This section presents a closer investigation of parameter choices for our op-
timization procedure. An investigation of parameter choices is of particular
importance for our experiments with Logistic Regression models, as the muta-
tion operators are non-deterministic. In detail, we are interested in investigating
the effect of the noise considered when modifying Logistic Regression mod-
els and the consideration of different terminal conditions (i.e., stopping the
optimization process after a different number of steps) for three mutation types:

– Reduction: Multiply a single vector element by a random value within a
range of {−noise, noise}.

– Adjustment: Multiply a single vector element by a random value within
a range of {1− noise, 1 + noise}.
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– Vector: Multiply each vector element by a random value within a range of
{1− noise, 1 + noise}.

We investigate a total of three different levels of noise for mutation (0.05,
0.1, 0.2). While an increased number of steps should always be beneficial for
improving a classification model (i.e., the chance of finding more fairness and
accuracy improvements is higher), the question is whether the additional costs
are justified. For this purpose, we consider three terminal conditions: 1000,
2500 and 5000 steps.

Figure 4 compares the number of successful modifications achieved by
modifying Logistic Regression models with different degrees of noise, as well as
the benefit of performing additional steps in the optimization procedure for
the three mutation operators (Reduction, Adjustment, Vector). For the two
mutation operators that modify a single element, Reduction and Adjustment,
we can observe that the highest number of successful modifications is achieved
by a mutation weight of 0.2. Among the 36 cases (two mutation operators
× six datasets × three terminal conditions), there is only one case where a
mutation weight of 0.1 achieves a higher number of successful mutations (i.e.,
5.67 with a weight of 0.1 over 5.62 with a weight of 0.2, with Reduction). Using a
mutation weight 0.2 for Vector modifications only achieves the highest number
of successful modification for one of the six datasets (Compas-sex). Given that
Vector modifications are more intrusive than the other mutation operators (i.e.,
modifying each vector element as opposed to modifying a single one), changes
might be too big, or a stage where no further changes are applicable is reached
quicker with high-noise modifications.

When applying Reduction modifications, an average 92.9% of all successful
modification are performed in the first 1000 steps. Within an additional 1500
steps (i.e., terminal condition of 2500 steps), 5.6% of successful modification
are performed. Only 1.6% of all successful modifications are performed in the
last 2500 steps, from 2501 to 5000. While the percentages vary over datasets
(e.g., after 1000 steps, 98% and 85% of modifications are performed for the
Adult and COMPAS dataset respectively), it can be seen that the benefit
of additional steps decreases over time, as the majority of modifications are
performed within the first 1000 steps. Vector and Adjustment show similar
results. The last 2500 steps (from 2501 to 5000) performed 10-15% of the
modifications, while more than 60% of successful modifications are performed
in the first 1000 steps. This confirms that the early steps of the optimization
procedure are of higher importance than later iterations.

Given the low amount of additional modification achieved after 5000 steps,
it is appears justified to not increase the limit for modifying Logistic Regression
models further for our experiments (RQ1-RQ3), with the chances of potential
improvements when using a mutation weight of 0.2. However, one could argue
for decreasing the number of steps to 1000, which would decrease the runtime
of our algorithm while retaining at least 60% of the successful modifications,
depending on the mutation operator.
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(a) Reduction

(b) Adjustment

(c) Vector

Fig. 4: Average number of successful modifications of Logistic Regression model
when applying our approach with three different noise degrees (0.05, 0.1, 0.2)
after 1000, 2500 and 5000 steps. Values are averaged over 50 data-splits and
three fairness metrics for optimization (SPD, AOD, EOD).

Lastly, we compare the quality of changes between the three mutation
operators. This allows us to not only compare the amount of modifications
but also the effectiveness of different operators. For this purpose, we illustrate
the pareto-fronts for each of the fairness metrics in combination with the
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Fig. 5: Pareto-fronts of the three different mutation operators (Reduction,
Adjustment, Vector), and three levels of noise (0.2 - black, 0.1 - gray, 0.05 -
white). Results are shown for four datasets: Adult (A), COMPAS (C), Bank
(B), MEPS19 (M). Three protected attributes are considered: race (R), sex (S),
age (A).

achieved accuracy in Figure 5. Among the nine mutated LR models (three
mutation operators with three different levels of noise, after 5000 steps), we
only visualize non-dominated ones. The modification operator that is part of
the most pareto-fronts is a Vector modification with a noise level of 0.2 (in 16
out of 18 pareto-fronts). Reduction and Adjustment are part of three to six
pareto-fronts, depending on the level of noise used. This illustrates that the
quality of improvements is influenced by the choice of mutation operators.

5.5 Advanced Classification Models

Commonly, the effectiveness of bias mitigation methods is evaluated for a given
classification model (e.g., which bias mitigation method should be applied to
the model) rather than to compare performances across models (e.g., which
model should the bias mitigation methods be applied to). Nonetheless, it
can be interesting to compare the performance of more advanced binary
classification models for potential future applications. For this purpose, we
consider three advanced types of tree-based and regression-based classification
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Table 10: Accuracy of Logistic Regression and Decision Tree approaches in
comparison with advanced classification models. The highest accuracy for each
dataset is highlighted in bold.

Adult Compas Bank MEPS19 In Pareto-front
Sex Race Sex Race Age Race SPD AOD EOD Σ

LR 0.833 0.833 0.677 0.677 0.899 0.838 3 2 1 6
LRSPD 0.845 0.845 0.676 0.675 0.900 0.835 6 - -
LRAOD 0.846 0.845 0.675 0.675 0.900 0.834 - 2 - 12
LREOD 0.846 0.845 0.675 0.676 0.900 0.834 - - 4
DT 0.817 0.817 0.622 0.622 0.877 0.760 0 0 1 1
DTSPD 0.836 0.841 0.645 0.638 0.892 0.798 5 - -
DTAOD 0.838 0.838 0.648 0.640 0.889 0.798 - 5 - 15
DTEOD 0.832 0.831 0.646 0.642 0.887 0.791 - - 5

RF 0.843 0.843 0.650 0.650 0.901 0.831 4 4 3 11
Boosting 0.863 0.863 0.686 0.686 0.908 0.838 6 6 6 18
NN 0.819 0.810 0.668 0.672 0.889 0.829 1 1 1 3

models: Random Forest (RF), Gradient Boosting (GB), Neural Network (NN).

Following existing fairness approaches (Chen et al., 2023b), our NN model
consists of five hidden layers (64, 32, 16, 8, 4, neurons respectively) and is
trained for 20 epochs. In accordance with our implementation of LR and DT
models, RF and GB are implemented using the default configurations provided
by scikit (Pedregosa et al., 2011).

Table 10 presents the accuracy achieved by each of the advanced classifica-
tion models, Logistic Regression and Decision Trees, and our post-processing
approach applied to both these models. To take fairness metrics in account,
we count how often each classification model is part of any of the 18 fairness-
accuracy pareto-fronts (six datasets and three fairness metrics), which illustrates
trade-offs between fairness and accuracy.

Among all classification models, GB achieves the highest accuracy on all
datasets, and outperforms RFs and NNs. NNs are outperformed by unmodified
LR models for all datasets. RFs are outperformed by our optimized LR models
in 5 out of 6 cases for accuracy, except for the Bank dataset. While DTs have
the lowest accuracy, they also show the lowest degree of bias in 15 out of 18
cases. The only dataset for which DTs do not achieve the lowest degree of
bias is the Bank dataset. For all three fairness metrics, NNs achieve the lowest
degree of bias for the Bank dataset. This suggests, that it can be beneficial to
carefully investigate and select suitable classification models for each use case.

Moreover, we observe that there is a trade-off between accuracy and fairness,
as the classification model with the highest accuracy is never the one with
lowest bias and vice versa. Nonetheless, it can be promising to use Boosting
models as a starting point to apply bias mitigation to, as they exhibited the
highest accuracy.
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6 Conclusions and Future Work

We proposed a novel search-based approach to mutate classification models in
a post-processing stage, in order to simultaneously repair fairness and accuracy
issues. This approach differentiates itself from existing bias mitigation methods,
which conform to the fairness-accuracy trade-off (i.e., repair fairness issues
come at a cost of a reduced accuracy). We performed a large scale empirical
study to evaluate our approach with two popular binary classifiers (Logistic
Regression and Decision Trees) on four widely used datasets and three fairness
metrics, publicly available in the popular IBM AIF360 framework (Bellamy
et al., 2018)).

We found that our approach is able to simultaneously improve accuracy
and fairness of both classification models in 61% of the cases. Our approach is
particularly effective for Decision Trees, where we achieve statistically significant
improvement on both accuracy and fairness in 81.1% of the cases. Moreover,
we achieved improvements without detrimental effect on other fairness metrics
that are not considered during optimization.

The comparison with three existing post-processing bias mitigation methods
showed that none of these methods is able to achieve an accuracy as high
as our method in any of the datasets. Furthermore, our approach is able to
outperform existing post-processing methods in both accuracy and fairness in
12/18 cases for Decision Trees.

These findings show not only the feasibility but also the effectiveness of our
approach with respect to existing bias mitigation methods. Software engineers
would benefit to have this tool at their disposal when developing fair software,
as it allows them to find good trade-offs between competing objectives rather
than proposing a solution which often sacrifices accuracy, as done in previous
work. According to their needs, engineers can choose the solution that better
conforms to their fairness and accuracy constraints.

The promising results reported herein can be further strengthened in future
work. In particular, while we already investigated two inherently different
classification models (Logistic Regression and Decision Trees) and various
mutation operators, it could be of interest to further extend our approach to
other binary classification models (e.g., Neural Network, Gradient Boosting)
and mutation operators, as these could lead to further improvements in the
results, as highlighted in Sections 5.4 and 5.5.
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