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Abstract—With increasing awareness of climate change, there
is a growing emphasis on the environmental impact of digital
solutions. While numerous tools are available to assess softwa-
reenvironmental footprint post-development, few focus on sus-
tainability during the software design phase. To address this gap,
we propose EcoDocSense, a framework that supports engineers
to evaluate the sustainability of a software design at design time.
Utilizing Large Language Models fine-tuned on a catalog of green
software patterns, EcoDocSense analyzes software architecture
documents to generate sustainability reports, assessing alignment
with green software practices to minimize carbon emissions and
recommending improvements. As one of the first frameworks
targeting sustainability at the design stage, EcoDoc Sense repre-
sents a significant advancement, though opportunities remain for
further enhancement. In future we plan to extend EcoDocSense’s
applicability to a variety of architectural types and documents
as well as to provide the capability to estimate carbon emissions.

Index Terms—Suistanable Software Architecture, Green Soft-
ware Patterns

I. INTRODUCTION

As software becomes more complex and widespread, the
demand for supporting machines grows, leading to increased
energy consumption and environmental consequences. By
2040, the software industry is expected to account for 14%
of the global carbon footprint, up from 1.5% in 2007 [1].

Software architectural decisions significantly affect the
amount of hardware used, how efficiently a software utilizes
that hardware, and the amount of data stored or sent over
networks. To make decisions with energy use and carbon
emissions in mind, software architects must learn about sus-
tainability concepts and understand how to apply them to their
designs. However, the software industry is still at the early
stages of the green software development journey [2]–[5].
While green principles are essential, there is limited automated
support for their adoption in practice, especially in the early
phases of the software lifecycle [3], [4].

To support engineers to integrate sustainability considera-
tions at design phase, we propose EcoDocSense, a framework
that analyzes software architecture documents for compliance

with a catalog of green software patterns. EcoDocSense takes
as input a document describing a software architecture, and
leverages automated data extraction, document retrieval and
generative models to generate as output a detailed sustain-
ability analysis which not only identifies the patterns that
are followed or overlooked in a given architecture, but also
provides suggestions for improvements.

To assess the feasibility of such idea we designed and
deployed a minimal viable products (MVP) in collaboration
with the Green Software Foundation (GSF) [6]. We carried
out empirical experiments by using the online open-source
catalog of software patterns reviewed and curated by the Green
Software Foundation [7] and publicly available documents
describing the architectural styles of Instagram, WhatsApp,
Dropbox, Uber and Netflix [8]. The results show that EcoSense
correctly identifies at least 94% of the patterns depending
on the retrieval approach used. Moreover, fine-tuning greatly
benefits the generative model performance with the best fine-
tuned model achieving a 70% F1-score on the architectural
documents used as benchmark (a 19% improvement over the
baseline’s score of 51%) and a reduced generation time to
about 6 minutes per document.

The EcoDocSense’s source code [9] and a demo-video [10]
are available on-line.

II. ECODOCSENSE

The EcoDocSense framework is inspired by Retrieval-
Augmented Generation (RAG), which combines document
retrieval with generative modeling, allowing the model to
generate more comprehensive and contextually accurate re-
sponses. This approach is particularly effective for addressing
complex or open-ended questions.1

1Initially, we considered Extractive QA Models for this task. These models
are designed to identify and extract specific answers directly from a given
text. However, they are limited by their dependence on the context provided
and cannot generate content beyond what is explicitly stated in the text [11].
We found that the effectiveness of this solution was constrained by its reliance
on the supplied context, often leading to irrelevant or incomplete responses
when the context lacked sufficient details.



Fig. 1: EcoDocSense Workflow

The EcoDocSense workflow, depicted in Figure 1, consists
of three phases:

1) Pre-Processing: In this phase, the textual information
contained in the architectural document is automatically
extracted, chunked in smaller pieces and converted into
a format that can be interpreted by both the retriever and
the generative model;

2) Retrieval: In this phase, a number of queries are built
based on the database of green software patterns (i.e.,
one query per pattern). These queries are used as input to
a Retriever which is able to find from the input document
those text chunks (i.e., architectural information) that
best matches each of the queries (i.e., green design
patterns). This retrieved text (which we refer to as text
chunks relevant to the query, or in short relevant chunks),
is then used as a context for the generative model’s
prompt in the next phase.

3) Generation: In this phase, a fine-tuned Large Language
Model (LLM) is used to answer each prompt built in
the previous phase. Moreover, the answer provided by
the LLM is further parsed to output a comprehensive
sustainability analysis containing both detailed pattern
compliance assessments and actionable recommenda-
tions, presented through a combination of graphs and
structured textual analysis.

In the following subsections we describe each of the phases
in more detail, as well as reflect on the design and technolog-
ical choices we had to make for each phase.

A. Pre-Processing

This phase takes as input a software architecture document
in PDF format, typically containing text, tables, and images.
Our project primarily focused on extracting and processing
textual content. Text extraction was accomplished using the
pymupdf4llm [12] Python library. After extracting text, we
faced the challenge of handling large documents due to
the context window limitations of generative models, which
measure input capacity in tokens (words or parts of words).

For example, the Phi-3 model has a context window of 4,000
tokens, which may be insufficient for a complete design
document. To address this, the text needs to be divided into
manageable chunks. To this end, we considered different
existing chunking strategies including Fixed Size Chunking,
Recursive Chunking, and Chunking Using Markdown [13].2

We ultimately selected Recursive Chunking, which divides the
text into progressively smaller chunks in a hierarchical and
iterative manner, using a set of separators. If the initial split
does not yield the desired chunk size, the process is repeated
recursively with alternative separators. We found recursive
chunking more effective due to its adaptability to varied data
sizes and structures, its usefulness in handling hierarchical or
nested data, and its capability to dynamically adjust and finely
control chunk sizes [14].

The text extracted from the architecture document is often
unstructured, making machine processing and analysis chal-
lenging. To address this, we converted the text into word
embeddings [15], numerical representations that convert words
or phrases into vectors to capture semantic meaning and
preserve vital information. This numerical format simplifies
similarity computations, essential for context retrieval. The
vectors are stored in a vector database, a specialized persistent
storage that enables efficient lookup of nearest neighbours
[16]. Persistently storing vectors avoids the need to regenerate
embeddings for previously processed documents and ensures
fast insert and retrieval operations, enhancing overall pipeline
speed and performance.

B. Retrieval

This phase works with two primary inputs: the queries,
which we derive from a green software pattern database, and
the vector database containing embedded text chunks, which
is obtained in the pre-processing phase.

2Chunking refers to dividing a large text corpus into smaller, manageable
pieces or segments, each acting as a standalone unit of information for
indexing and retrieval.



TABLE I: Number of Green Patterns per Category.

Category Number of Patterns
Resource Optimization 19
Data Efficiency 6
Performance Management 12
Security 7
User Impact 1
Total 45

Queries are essentially questions formulated based on exist-
ing green software patterns. For instance, if the green software
pattern is “Optimize Storage Utilization”, the corresponding
query might be “Is there any mention of optimizing storage
utilization?”

The current implementation of EcoDocSense makes use of
the online open-source database of software patterns reviewed
and curated by the Green Software Foundation [17] to derive
queries.3 Specifically, the database used for EcoDocSense
encompasses both Web and Cloud patterns derived from the
GSF database [17], for a total of 45 green patterns. Table
I summarises these patterns grouped under five categories
(namely resource optimization, data efficency, performance
managment, security and user impact). The description of
these patterns can be found in the EcoDocSense’s GitHub.

To facilitate future extension of queries to encompass addi-
tional green patterns, the queries are stored in JSON format.
Each query contains the following details:

• Type: The architectural type to which the green pattern
applies (e.g., Web, Cloud).

• Category: The category of the green pattern (e.g., Re-
source Optimization, see Table I).

• Pattern: The specific green pattern (e.g., Optimize storage
utilization);

• Query: A question derived from the green pattern to be
included in the prompt (e.g., Is there any mention of
optimizing storage utilization?).

The Retriever component uses a query to identify relevant
information from the vector database (representing the original
architectural document) that can address the query. The Re-
triever specifically uses the query to identify chunks containing
information relevant to that query from the vector database,
where vector distances are increasingly utilized to measure
text similarity [18]. These vectors are represented in a high-
dimensional space, where shorter distances indicate greater
similarity between statements, and longer distances indicate
lesser similarity. To balance reliability and precision, the top
five texts with the shortest vector distances are selected and
used as context to construct a comprehensive output. Such
output forms the so called contextualized prompt, which is
provided, alongside the query, as input to the generator in the
next phase.

3As defined by the GSF: “A green software pattern is a specific example of
how to apply one or more green principles in a real-world example. Whereas
principles describe the theory that underpins green software, patterns are the
practical advice software practitioners can use in their software applications
today. Patterns are vendor-neutral.” The goal of each such software green
pattern is that its use will reduce software emissions.

To realize the retriever component, we explored various
retrieval strategies but found that not all align with the project’s
specific application scenario. For instance, the Contextual
Compression Retriever employs a large language model to
summarize text chunks for more accurate searches when
dealing with excessively long texts. However, given that we
are working with a relatively small dataset consisting of
only one architectural document at a time, the resulting text
chunks are concise, rendering this retriever unsuitable for our
purposes. Thus, three retrievers were chosen for comparison
to empirically assess their suitability for EcoDocSense, all of
which use vector distance to calculate text similarity:

• The Chroma Retriever enhanced with Maximal
Marginal Relevance (MMR) 4, which balances query
relevance and result diversity by using vector distances
between text segments based on their embedding vectors.
It prioritizes segments most similar to the query while
diversifying results by considering the independence of
selected segments, reducing redundancy and offering var-
ied perspectives [19].

• The Multiquery Retriever, which employs the LLM
model; in our case, we chose Llama2 [20], to broaden
the query’s semantic scope by generating 3-5 variations
of the original query, capturing a wider range of related
information [21]. Each variation is assessed using vector
distance measurements to ensure comprehensive results
that closely match the user’s informational needs.

• The Ensemble Retriever, which combines the strengths
of two distinct retrievers to enhance retrieval perfor-
mance; in our solution, we utilize BM25 [22] and Faiss
[23]. BM25 excels in keyword-based searches by ana-
lyzing word frequency and term importance, while Faiss
retrieves semantically similar content based on vector
similarity, even without exact keyword matches. Integrat-
ing these methods provides a more precise and robust
search experience through both keyword precision and
semantic understanding.

The design and results of our empirical comparison of the
above retrievers are discussed in Section III.

C. Generation

The generation phase is responsible for answering a given
query (i.e., identifying a given pattern) given the contex-
tualized prompt retrieved in the previous phase (i.e., given
the most relevant information to the query as retrieved from
the architectural document). This ultimately enables us to
determine whether specific green software patterns are being
considered in the architectural document.

This phase involves three key components: selecting
an appropriate language model; optimizing the language
model’s performance with fine-tuning; and engineering effec-
tive prompts.

4MMR considers the similarity of keywords/keyphrases with the document,
along with the similarity of already selected keywords and keyphrases. This
results in a selection of keywords that maximize their diversity with respect
to the document.



To identify a suitable LLM model, we focus on five open-
source models to experiment with: LLaMA2 [20], LLaMA3
[24], LLaMA3-ChatQA [25], Mistral [26], and Phi-3 [27].
These models were chosen for their lightweight nature, ease
of deployment, and fine-tuning capabilities.

We conducted a manual review of the responses generated
by these models. Mistral was inadequate in making relevant
judgments. LLaMA2 provided more detailed explanations but
frequently affirmed the presence of a pattern even when it
was not explicitly mentioned in the document. For example, it
incorrectly suggested that the ”cache static data” pattern was
being followed, even though the context merely mentioned
storing data in a database without any reference to caching.
LLaMA2’s responses often implied that if a feature could po-
tentially be integrated into the system, it should be considered
present. In contrast, LLaMA3 demonstrated strong writing
skills but was slower in processing, and LLaMA3-ChatQA
struggled with analyzing lengthy documents. Phi-3, however,
delivered high-quality answers quickly, with responses that
were more concise and context-aware than those of LLaMA2.
Unlike LLaMA2, which was overly optimistic about identify-
ing green patterns, Phi-3 provided more cautious and precise
evaluations, making it more suitable for our task. Moreover, we
experimented the use of Phi-3 with and without fine-tuning.
The design and results of our experiments are discussed in
Section III.

Prompt engineering was also crucial. Prompt engineering is
the process of structuring an instruction that can be interpreted
and understood by a generative AI model. We found that the
structure and content of the prompts significantly affected the
quality of the output, leading us to experiment with different
prompts. Due to space constraints, we provide a description
of the prompts we compared in our on-line repository [9]
We ultimately selected the prompt “Act as a professional
assistant in software development and use this as a context
< context > to answer this question < query >”, which
delivered promising results both before and after fine-tuning.
This process involved considerable trial and error. Although
there may be better prompts available, this one proved suffi-
cient for our prototype by providing consistent results. .

D. Web Interface and Sustainability Report

EcoDocSense features a modern web interface where en-
gineers can upload their document and analyses the results
by using intuitive and interactive charts (see Figure 2) as
well as a comprehensive sustainability report containing both
detailed pattern compliance assessments and actionable rec-
ommendations (see Figure 3). The report categorizes green
patterns and offers a clear overview of which patterns are
being implemented, which are not, and which are irrelevant
to a specific architectural style. The findings are visually pre-
sented using bar charts and pie charts. Additionally, the report
includes detailed recommendations on which patterns should
be adopted and how they can be integrated into the software
development lifecycle to help reduce the environmental carbon
footprint. An example of report can be found on GitHub.

TABLE II: Fleiss Kappa and Agreement Results

Architecture Document Fleiss Kappa No. of Queries with 100%
Agreement Among 5 Raters

Uber 0.945 52/54
Netflix 0.959 43/45
Instagram 0.964 47/48
Dropbox 0.985 45/46
Whatsapp 0.984 45/46

III. EVALUATION

To assess the feasibility of our solution, we formulated
three research questions designed to evaluate the practicality
and effectiveness of different approaches for the retrieval and
generator phases, allowing us to identify the most fruitful
strategies.

RQ1: Effectiveness of Retrieval Strategies: What is the
effectiveness of the different retrieval strategies within our
framework? To evaluate this, we assess the performance of
each retrieval strategy described in Section II-B, thus identi-
fying which strategy delivers optimal results.

RQ2: Impact of Fine-Tuning: To what extent does fine-
tuning the language model enhance the performance of the
generator? This is evaluated by comparing the outcome of the
Phi3 fine-tuned model with the outcome of the base model
(i.e., Phi3 without fine-tuning).

RQ3: EcoDocSense Overall Performance: What combi-
nation of retrieval and generator strategies does provide the
best performance for EcoDocSense? To measure the overall
performance of EcoDocSense, we analyzed the combination
of the three retrieval strategies analyzed in RQ2 with the best
Phi3 large language model from RQ2 (tuned and non tuned)
and empirically assessed their effectiveness to accurately inter-
pret and convey sustainability-related information in software
architectural documents.

A. Benchmark Documents

To answer the above RQs, we require software architecture
documents to serve as a benchmark. To this end, we identified
five documents describing the architectural styles of Instagram,
WhatsApp, Dropbox, Uber, and Netflix. These documents are
publicly available from GeeksforGeeks [8].5

Initially, we considered using official software documen-
tation from Apache projects. However, these documents were
too large and complex, making them impractical for processing
with our LLM due to the manual effort required to review
and analyze content related to green software patterns. Con-
sequently, we opted for these five documents from Geeks-
forGeeks, which were more concise and easier to understand,
enabling us to manually curate a reliable ground truth dataset.

In order to curate the ground truth data, five authors
consulted each of the five documents and provided an answer
for each of the green software patterns (i.e., queries) in our
study. Precisely, each query was answered by each of the five
authors with “yes,” “no,” or “not applicable,” depending on
whether the pattern described in the query was applicable to

5This usage complies with the terms of use of GeeksforGeeks [28].



(a) Sustainability Analysis Overview (b) Detailed results

Fig. 2: EcoDocSense Web Interface

(a) Example of Pattern Followed

(b) Example of Pattern Not Followed

(c) Example of Improvements Identified

Fig. 3: EcoDocSense Sustainability Report

the architecture described in a given document and, if so,
whether it was being followed or not. For each of the five
documents, the final response to each query was determined
through majority voting among the five independent reviewers.
The inter-rater reliability was quantified using Fleiss’ Kappa,
which is a statistical measure evaluates the consistency among
different raters [29]. The results are shown in Table II. We
can observe that the inter-rater agreement for each benchmark

document is very high, with kappa values ranging from 0.94
to 0.98, indicating almost perfect agreement.

B. RQ1: Effectiveness of Retrieval Strategies

To evaluate the three retrieval strategies outlined in Section
II-B we documented the chunks retrieved by each of the
methods. Two authors conducted a manual review of all
retrieved chunks to assess whether they contained the relevant
information necessary to accurately answer the queries, based
on the ground truth data described III-A.

Table III presents the comparative performance of the re-
trieval strategies applied to the ground truth dataset. We can
observe that the results are closely aligned, likely due to the
limited number of documents analyzed. Although the Multi-
query Retriever slightly exceeded the others in the number of
correct retrievals, it often returned verbose contexts containing
irrelevant information. Moreover, during our experiment, we
discovered large differences in runtime performance among the
retrievers. The Ensemble Retriever, requiring the loading of
two separate retrievers, took approximately 142.4 seconds just
to create an instance. Additionally, the Multiquery Retriever
had a query processing time of around 22.6 seconds per query,
which was nearly 10 times slower than the Chroma Retriever
with MMR. In fact, Chroma Retriever with MMR demon-
strated superior performance, completing the entire process in
just 2.4 seconds. Given that Chroma with MMR strikes the best
accuracy-runtime trade off, it is the most desirable retriever for
EcoDocSense.

C. RQ2: Impact of Fine-Tuning

We experimented the use of Phi-3 with and without fine-
tuning. To this end, we compare the baseline model (Origin
Phi-3) with 8 versions of fine-tuned models different in the
number of epochs or learning rate. In particular, we explore
the following parameters:

• Temperature - Set to 0.8 to balance creativity and con-
sistency, based on satisfactory results given by it.



TABLE III: RQ1. Number of correct retrievals for all the queries.
Retriever Netflix Uber Instagram Dropbox Whatsapp Total
Chroma Retriever with MMR 43/44 51/53 46/47 41/45 39/45 220/234
Multiquery Retriever 43/44 51/53 47/47 44/45 43/45 228/234
Ensemble Retriever 41/44 51/53 46/47 43/45 40/45 221/234

Fig. 4: Comparison of Phi-3 Fine-tuned Models VS. Base in
terms of F1, G-mean and MCC.

• Epochs - We tested 1-3 epochs initially, increasing to
10 and 30, which decreased training loss6, indicating
improved performance.

• Learning rate7 - Started at 2e-4 (0.0002) for fewer epochs,
adjusted to 2e-5, which is 10 times slower for stability
with more epochs.

Since no existing dataset was available to carry out fine
tuning, we created a synthetic dataset by using ChatGPT-
4, producing 1,600 entries for training [30]. This approach
allowed us to improve Phi-3 without the need for complex data
collection. Although this dataset is relatively small compared
to what is typically used for fine-tuning models, it was suf-
ficient for exploring the viability of synthetic data generation
under time constraints.

We evaluated the performance of these models by compar-
ing each model’s responses to the ground truth based on three
measures: F1 score, G-Mean and Matthews Correlation Coef-
ficient (MCC) [31]. These measures are particularly suitable
for imbalanced datasets. The G-Mean balances sensitivity (true
positive rate) and specificity (true negative rate), offering a
comprehensive view of model performance across all classes.
In contrast, MCC provides a single summary statistic that
reflects the quality of predictions, considering both true and
false positives and negatives. The F1 score, which balances
precision and recall, was chosen for its ability to account for
both true positives and false negatives, critical in identifying
green patterns in architecture documents [31]. These peculiari-
ties make them suitable for cases of class imbalance, evident in
our dataset where non-followed patterns outnumbered adhered
ones, aligning with our pipeline’s objectives.

Figure 4 compares models using the F1 score, configuration

6Training loss measures how well the model fits the training data, indicating
learning effectiveness. A decreasing training loss suggests better model
performance on the training set.

7The learning rate is a tuning parameter dictating the step size in minimizing
the loss function.

labels in the diagram represent the baseline model (Origin
Phi-3) and 8 fine-tuned models. Among all models, FT-V6
(Version 6 of Phi-3 fine-tuned for 30 epochs) was chosen for
its efficiency and effectiveness. The best model achieved a
70% F1 score, a 19% improvement over the baseline Phi-3
score of 51%, and also reduced generation time to about 6
minutes per document.

D. RQ3: EcoDocSense Performance

In the previous RQs, we independently tested different
retrievers (RQ1) and fine-tuning strategies (RQ2). This RQ3
explores whether their combined use could enhance overall
performance, aiming at identifying the best combination to be
used for EcoDocSense. To this end, we considered six different
configurations by pairing each retriever with both the non-
tuned Phi3 generator (which we refer to as Base) and the best
fine-tuned Phi3 generator found in RQ2 (namely FT V6). We
use the same benchmark data used for the previous RQs.

Table IV reports the results of each configuration in terms
of G-mean, MCC and F1 measures; we also include sensitivity
and specificity for completeness.

We can observe that the baseline models frequently exhib-
ited low sensitivity (ranging from 0% to 16.67%) and high
specificity (ranging from 89.02% to 100%), thus resulting
in lower G-Mean and MCC values. The worst configuration,
namely the MultiQuery Base model achieves 0% sensitivity,
an MCC of -2.67 and an F1 of 46.23, indicating a significant
failure to correctly identify positive instances. Such deficien-
cies are critical in applications like software architecture doc-
umentation, where the accurate identification of key patterns
is essential.

Fine-tuned models, on the other hand, generally performed
better, showing enhanced sensitivity (ranging from 26.67% to
40%), which coupled with a high specificity (ranging from
76.96% to 92.67%) positively impacts the other measures. For
example, the Chroma Fine-Tuned configuration achieved a G-
Mean of 65%, an MCC of 40% and a F1 of 64.35%. This rep-
resents a substantial improvement over the base models. These
results highlight that fine-tuning enhances the model’s ability
to detect true positives while maintaining high specificity.
The improved G-Mean and MCC values demonstrate a more
balanced and effective model, underscoring the importance
of using a set of diverse metrics in evaluating performance,
especially in the context of imbalanced data [31].

E. Limitations

Our primary goal was to develop a minimal viable product
in collaboration with the Green Software Foundation in order
to assess the proposed idea and product’s viability within
under four months. While this first prototype of EcoDocSense
demonstrates positive results, it also has several limitations



TABLE IV: RQ3. Sensitivity, Specificity, G-mean, MCC and F1 for different configurations

Configuration
(Retriever Generator) Sensitivity (%) Specificity (%) G-mean (%) MCC (%) F1 (%)

Chroma Base 13.33 89.01 34.45 2.53 51.20
MultiQuery Base 0.00 99.48 0.00 -2.67 46.23
Ensemble Base 16.67 100.00 40.82 38.39 61.21
Chroma Fine-Tuned 46.67 92.67 65.76 40.51 64.35
MultiQuery Fine-Tuned 26.67 80.63 46.37 6.20 52.63
Ensemble Fine-Tuned 40.00 76.96 55.48 13.36 55.25

resulting from the given time constraints. Aware of these, we
prioritized completing the system end-to-end with all planned
functionalities and documented the shortcomings.

A significant threat to the generalizability of our results
is the evaluation based on only five architectural documents,
which was mainly due to the large manual effort required to
create the ground truth dataset. The use of a fine-tuning dataset
synthetically generated by using LLMs, is also affecting the
internal validity of our study. This issue remains unless the
data is manually validated by software practitioners.

Another key limitation is the focus on extracting and
processing textual content from software architecture doc-
uments, with limited attention to image-based information.
These documents often include technical diagrams that vi-
sually summarize software aspects and may contain annota-
tions about specific technologies not mentioned in the text,
making it important to capture such visual details. To tackle
this, we experimented with an image extraction component
using the LLaVA model [32] to generate visual summaries.
However, initial results showed hallucinations, with the model
incorrectly referencing irrelevant technologies or layers. Due
to these inaccuracies, further improvements were deferred,
and this feature has been made optional in EcoDocSense for
engineers to enable or disable as needed.

Additionally, the system’s suggestions highlight green pat-
terns’ benefits but lack guidance on implementing these prac-
tices. This is because the model was fine-tuned to emphasize
importance rather than practical implementation, requiring
further training for more specific guidance.

IV. RELATED WORK

A. Sustainability in the Software Development Lifecycle

Research in green IT has mainly focused on hardware
energy efficiency [33], yet delivering sustainable solutions
across the entire software lifecycle is becoming more and
more prominent [2], [4]. Agarwal et al. [34] highlight the
importance of integrating sustainability in software develop-
ment and Rashid and Khan [33] identify agile practices that
enhance sustainability in software development. Both studies
suggest verifying green practices during the design phase as a
way to improve software sustainability. Moreover, researchers
have devised different ways to derive green design patterns.
For example, Shanbhag et al. [35] synthesize eight energy
patterns for deep learning projects from an analysis of Stack
Overflow posts. The patterns were subsequently validated with
a questionnaire survey with 14 practitioners. Subsequently,
Järvenpää et al. [36] extended the scope and coverage of

their work by including all forms of ML, and deriving green
architectural tactics from scientific literature. This ultimately
led to the 30 green tactics, which also include the 8 energy
patterns from Shanbhag et al. [35].

B. Tools Computing Software Environmental Impacts

Tools like the AWS Carbon Footprint Tool [37], the Mi-
crosoft Sustainability Calculator [38], and the Cloud Carbon
Footprint [39] assess environmental impacts by monitoring
resource usage and carbon emissions post-development. The
Green Software Foundation has developed the ”Impact Frame-
work” [40], which simplifies the calculation of a software’s
environmental impact by using custom manifest files.8 How-
ever, these tools do not enable users to make an assessment
of the environmental impact or compute carbon footprints at
the design stage. The AWS Well-Architected Tool [41] is
the only one handling environmental impact at the design
stage, as it aims at guiding architects and developers on best
practices for designing AWS workloads across six pillars,
namely ’Operational excellence,’ ’Security,’ ’Reliability,’ ’Per-
formance efficiency,’ ’Cost optimization,’ and ’Sustainability.’
Each pillar has specific practices to evaluate a workload’s
adherence by asking users predefined questions, assessing the
risks of not implementing practices, and prioritizing them
accordingly. A limitation of this tool is its reliance on users
to manually identify practices rather than automating this
process. If practices are missing, an improvement plan is
created. Our proposed framework, instead, enable software
architects and engineers to automatically assess the compli-
ance of their software architecture with respect to a catalog
of green software patterns in order to evaluate their software
environmental impact at design stage.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed EcoDocSense, a framework
that can be used to integrate a sustainability perspective into
software architecture documents at design phase. We realised
EcoDocSense as an end-to-end mechanism, which serves as
a proof of concept, demonstrating the feasibility of our idea.
While EcoDocSense has some limitations and requires further
work to be ready for a broader adoption, its status as the first
initiative of its kind, combined with its open-source nature and
the development of a fully functional MVP, supported by the
Green Software Foundation, has laid a foundation for future

8Manifest files are YAML files which are specially structured to hold user
inputs and generated outputs, making it easier to communicate the software’s
environmental impact.



advancements. Next steps involve the integration of EcoDoc-
Sense with the the Impact Framework [40]; this enhancement
would allow one to obtain a quantitative evaluation of the car-
bon emissions associated with different architectural choices
[42]. Moreover, EcoDocSense currently focuses solely on web
and cloud green patterns yet, thanks to its extensible queries
design, it could be expanded to incorporate additional archi-
tectural types, for example targeting AI-driven applications
[4], [35], [43]. By extending EcoDocSense’s knowledge base,
one can increase the number of green patterns it recognizes,
thereby covering a broader spectrum of sustainable practices.
Future work will also focus on enhancing the extraction of
information. At present, the framework primarily handles text
data extracted from PDF software architecture documents.
We aim to extend its capabilities to process other types of
documents and data, including, for example, tabular data
and technical diagrams. This integration will lead to a more
comprehensive analysis of software architecture documents.
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