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Abstract—In order to aid quality assurance of large complex
hardware architectures, system simulators have been developed.
However, such system simulators do not always accurately mirror
what would happen on a real device. A significant challenge in
testing these simulators arises from the complexity of having to
model both the simulation and the infinite number of software
that could be run on such a device.

Our previous work introduced SearchSYS, a testing frame-
work for software simulators. SearchSYS leverages a large
language model for initial seed C code generation, which is then
compiled, and the resultant binary is fed to a fuzzer. We then
use differential testing by running the outputs of fuzzing on real
hardware and a system simulator to identify mismatches.

We present and discuss our solution to the problem of testing
software simulators, using SearchSYS to test the gem5 VLSI
digital circuit simulator, employed by ARM to test their systems.
In particular, we focus on the simulation of the ARM silicon chip
Instruction Set Architecture (ISA).
SearchSYS can create test cases that activate bugs by

combining LLMs, fuzzing, and differential testing. Using only
LLM, SearchSYS identified 74 test cases that activated bugs.
By incorporating fuzzing, this number increased by 93 additional
bug-activating cases within 24 hours. Through differential testing,
we identified 624 bugs with LLM-generated test cases and 126
with fuzzed test inputs. Out of the total number of bug-activating
test cases, 4 unique bugs have been reported and acknowledged
by developers. Additionally, we provided developers with a test
suite and fuzzing statistics, and open-sourced SearchSYS1.

Index Terms—Software System Simulation, SearchSYS,
gem5, AFL++, Fuzzing, Fuzz Testing, Differential Testing,
Search-Based Software Testing, LLM, Language Models, Ollama,
CodeLlama, TinyLlama, Phi2, Llama2, Magicoder, CodeBooga,
GPT-3.5-turbo, prompt engineering

I. INTRODUCTION

Creating and developing new system architectures is a
challenging task that requires a significant investment in both
human and physical resources. Architectural simulators sup-
port this process by providing environments where developers
can validate their architectural goals. A good example of these

1See https://zenodo.org/records/13450472 for initial seeds and
SearchSYS code, and https://zenodo.org/records/13909721 for adjustment
to ARM8v and fuzzed seeds.

systems is gem5 [1], [2], an open-source modular platform for
computer system architecture research that includes system-
level architecture and processor microarchitecture. The ac-
curacy and reliability of software architecture simulators are
paramount for optimizing development investment and ensur-
ing a smooth lifecycle. However, software complexity of such
simulators makes them difficult to test comprehensively for all
potential architectural purposes. Identifying mismatches, inter-
nal simulation errors, and performance issues in simulators can
lead to their improvement and make them more robust, thereby
maximizing the return on investment.

Our previous work [3]–[6] addressed this problem by com-
bining large language models (LLMs), fuzzing, and differen-
tial testing. By employing OpenAI’s Large Language Model
(LLM) GPT-3.5-turbo to generate a baseline test suite
from seeded programs, and our modified version of AFL++,
our system discovered various implementation bugs in gem5
related to the Intel 64 bit X86 architecture. Whereas fuzzers
traditionally rely on implicit test oracles, such as crashes, and
timing out loops, differential testing strengthens the fuzzer
by allowing it to automatically check for non-fatal errors,
such as differences between running a simulation and running
on actual hardware. We then extended this work to create
SearchSYS [5], which fully automates our initial proof-of-
concept and introduces novel mutation operators which are
able to mutate not only the seed program itself, but also its
command line parameters. Using SearchSYS we were able
to further increase the bug finding ability of our approach.
Again, we focused on the X64 architecture.

To showcase generalizability and widen impact and signifi-
cance of our contribution, we now conduct an empirical study
on the ARM family of CPUs. ARM is a $160 billion [7]
company which designs chips and licenses them to others
to manufacture and integrate them into devices. Although
its CPU stretches the full gamut of today’s computing, from
supercomputing HPC, cloud computing, servers, desktops, and
laptops, to Raspberry Pi, its processors are by far the most
successful CPUs largely because almost all mobile telephones

https://zenodo.org/records/13450472
https://zenodo.org/records/13909721


and handheld smart devices are based on ARM CPUs. Alto-
gether more than 200 billion ARM chips have been sold [8].
Naturally, such a company has considerable in-house expertise,
nevertheless ARM makes use of the open source gem5 project
keeping its own git clone but also paying close attention to
fixes and developments to the public version [9], [10].

Despite being crucial to the quality of chip designs, at the
cost of only a few days of computer time, by systematically
using SearchSYS we were able to find and highlight 14
different types of issues with gem5’s simulation of the ARM
processor chips. Furthermore, SearchSYS has automatically
created test cases for gem5’s simulation of the ARM In-
struction Set Architecture (ISA), which previously would have
taken skilled engineers weeks to do by hand.

Finally, by simultaneously providing the gem5 development
team with details of C++ source line coverage for each test, we
open the way for future work whereby regression testing can
be automatically targeted at immediate development changes.
We expect that by executing tests that run the just modified
code, there will be more chance of finding and addressing
issues. Moreover, selecting which tests to run should speed up
testing, possibly allowing real-time continuous integration test-
ing [11]–[13]. Experience with Meta [14]–[16] highlighted the
importance of giving individual developers immediate feed-
back. Hopefully, this can reduce reliance on the current mix
of daily and weekly regression testing, which is undirected and
already consumes several weeks of computer time per week.

Fuzz testing used in SearchSYS gives us automated test-
ing. It consumes computer time, rather than a test engineer’s
time. Over the last few years fuzzing has been extensively used
by Google to find many thousands of security related problems
and other bugs [17]. AFL++ [18] is the state of the art fuzzing
tool. Our SearchSYS extends AFL++ with the addition
of automatically generated test seeds and domain specific
mutation operators and, as we shall see, leads to cost effective
testing of the state of the art in VLSI simulators, i.e. gem5,
for the most widely used general purpose CPU on the planet.

The purpose of this study is to evaluate the reliability and
accuracy of gem5 as an ARM simulator and to extend gem5’s
existing test suite. To achieve this, we apply SearchSYS
to identify bugs in gem5, generate test cases, and measure
gem5’s capabilities on ARM machines.

We identify 14 different types of bugs, including panic
errors (which are of particular interest to gem5 develop-
ers [19]), performance bugs, and differential bugs, where we
compare the simulation outcomes with those from physical
ARM machines. We have already reported 4 of these bugs.
The selection of which bugs to report depends on whether
they belong to the previously mentioned categories. We do
not report regular crashes, such as system call issues, non-
panic segmentation faults, and timeouts that are less than 24
hours, as the developers find them less interesting [19].

To summarize, our contributions are:
• An extensive empirical study of SearchSYS applied to

the ARM architecture, using the gem5 system simulator.
Our results reveal that we were able to identify 14

different types of bugs in gem5’s simulation of the ARM
architecture.

• Delivery of 3 661 LLM-generated tests and 30 000+
fuzzed tests along with a detailed analysis of bug-
activating test cases to the gem5 development team.

• An empirical investigation of six large language models
for input generation for SearchSYS.

We provide SearchSYS, bug reports, test cases and details
of fuzzing performance and statistics via [20], to facilitate
reproducibility of this study and wider use of SearchSYS.

Section III describes SearchSYS and how it integrates
multiple C code generating LLMs with fuzz testing and
extends fuzz testing with simulator specific mutations and
differential testing. Our research questions, methodology to
answer those, and experimental setup are given in Section IV.
Whilst Section V gives our results including contrasting the
effectiveness of six LLMs at testing gem5’s simulations of
ARM hardware. The discussion (Section VI) and related work
(Section VII) are followed by our conclusions in Section VIII,
but first, we start with the background (Section II).

II. BACKGROUND

We provide here a quick introduction to fuzz testing and
large language models, as these underpin our approach imple-
mented in SearchSYS.

A. Fuzzing with AFL

Fuzzing is a technique used to identify bugs in programs by
running the program with a variety of test inputs. Originally
the test inputs were generated at random. With the introduction
of feedback-based fuzzing techniques, new methods have been
developed to manipulate the initial test inputs. Typically these
aim to change (mutate) the test inputs in order to exercise
new parts of the software under test (SUT) during the fuzzing
process. One of the most popular fuzzers is the American
Fuzzy Lop (AFL) [21], and related to the AFL family is
AFL++ [18], which we are using for SearchSYS.

AFL begins by automatically instrumenting the software
under test (SUT). This instrumentation provides feedback to
the fuzzing process and is performed at compilation time. The
compiler introduces various flags in the programs that are
related to the code branches visited during execution. During
the fuzzing process, AFL starts by running a set of predefined
inputs, called seeds. These inputs are then mutated as part of
the fuzzing strategy. AFL retains those mutated inputs that
explore new sections of the program that previous inputs have
not visited, and continues to mutate them to discover new
paths. The inputs are maintained in a queue and are selected
by the fuzzer based on the strategy and the effectiveness of
their mutations. The main goal of fuzzing is to improve the test
coverage of the SUT. The fuzzer runs until specific termination
conditions are met, usually a time limit.

In the context of this work, the seeds are created by
large language models (LLMs). The LLMs generate not only
programs that exercise the SUT (the simulator), but also the
program’s inputs and their types.



B. Large Language Models

Like the original SearchSYS work [3], [5], we use large
language models to provide a set of seeds for the fuzzers.
Large language models have become prominent in recent
years, especially after the popular introduction of GPT-3.5.
GPT LLMs are based on transformers [22] with attention
mechanisms to identify relevant parts during the learning
process. Currently, several large language models are available,
both private and public. Notable private LLMs include Gemini
by Google and Llama 3 by Meta. In terms of public LLMs,
various communities have also created their own, such as
Dolphin and Mistral, which are available through platforms
like Huggingface or the Ollama interface.

Here we use a variety of LLMs of different sizes and
natures. We use GPT-3.5 and Phi-2, a Microsoft LLM aimed at
software generation. We employ Llama2 and TinyLlama, two
general-purpose LLMs of different sizes. We use Magicoder,
combining auto-encoders and transformers for program source
code generation. Additionally, we use CodeBooga, which inte-
grates various LLMs, specifically Phind-CodeLlama-34B-v2,
which outperforms GPT-4 in code generation tasks [23] and
WizardCoder-Python-34B-V1.0. All of these public LLMs
are run through the Ollama framework, which provides the
necessary infrastructure for LLM execution.

C. gem5 System Simulator

gem52 is a state-of-the-art discrete time simulator for logic
circuits. It is often used to try out the logic design of
new electronic components such as memory cache systems,
FPGAs, and even CPUs. gem5 is a large open-source project
hosted on GitHub, written mostly in C++ and Python. It is used
by companies such as ARM and Google to simulate hardware.
Including objects, shared library and images, gem5 occupies
over 28 GB of memory. It is composed of ∼ 1.34 million lines
of code, comprising more than a million lines of C++.

The gem5 simulator has a comprehensive testing framework
comprising C++ unit tests, Python unit tests, and TestLib
integration tests. Each test set focuses on specific aspects of
the system, ranging from low-level code validation to full-scale
simulation testing.

The unit tests in gem5 are designed to validate the func-
tionality of the core C++ components and are automatically
executed as part of gem5’s continuous integration (CI) pro-
cess. These test much of the core C++ code and maintain
code integrity and correctness after Git commits. In addition
to C++ unit tests, gem5 includes Python unit tests, which
naturally focus on verifying Python-based components. The
Python tests are quick to run and fewer in number than the
C++ unit tests.

Testlib integration testing is more intensive in nature. Al-
most everything in Testlib runs a gem5 simulation. The tests
are categorized into three sets: “quick”, “long” and “very-
long”. The “quick” tests are run during CI, the “long” tests
are executed nightly, and the “very-long” tests are conducted

2https://www.gem5.org

weekly. Some tests depend on the specific configuration of
the host system, and Docker containers are often required to
ensure these tests run properly.

III. SEARCHSYS
Figure 1 shows the structure of each part of SearchSYS.

Our approach combines large language models with fuzz
testing to identify bugs within system simulators and to
generate test suites. The main idea is to address a key challenge
with fuzzers: traditionally fuzzers are given a set of input
values for the software they are to test (the SUT). (These
are known as seeds.) Here we are testing simulators, whose
inputs are programs to be simulated. That is, instead of
starting with numbers, etc., as inputs, the initial seeds are
programs. Until recently, automatically creating programs of
interest was hard3. However, now there are LLMs dedicated to
program source code generation. Therefore, we use LLMs to
create an initial set of test seeds, which are of interest for
the fuzzing process and can improve test coverage. Given
the complexity of the simulator software, it is crucial to
have useful seeds that can enhance coverage, especially when
testing a comprehensive architecture like ARM. Further, as
a traditional fuzzer runs, it changes the SUT’s test inputs to
try and cover new branches within the SUT. As our SUTs
are simulators, SearchSYS extends the fuzzer so that it
can mutate both the input executable binary program and its
command line parameters along with their data type.

We consider three types of bugs: 1) crashes 2) issues with
efficiency or performance, such as program hangs 3) mis-
matches between the simulator and the actual hardware. For
this last type of bug, it is essential to determine whether the
simulator behaves as the real system. This is where differential
testing becomes crucial. SearchSYS provides the differential
testing infrastructure to compare test cases within the simulator
and outside of it.

Our testing approach is divided into three main components:
1) Test Input Generation System: This system uses Large

Language Models (LLMs) to create a set of test cases
which serve as our testing baseline. Unlike traditional
fuzzing processes that require existing programs as seeds,
we ask different large language models to generate
the test cases (programs to be simulated) automatically.
(Note: in the context of the ARM Instruction Set Ar-
chitecture it can take weeks for a skilled engineer to sit
down with the ARM ISA hardware documentation and
code programs to test each part of the ISA.)

2) Coverage-Guided Fuzz Testing Tool (AFL++): AFL++
focuses on identifying new uncovered code regions in the
simulation system and achieving higher coverage through
mutation-based testing. AFL++ employs a driver for the
simulation system, enabling the simulation/execution of
any binary program with specific parameters. The type
of the parameters is specified by the LLM. The LLM

3E.g. (in the context of testing) automatically generating programs that
achieve high coverage, have specific patterns or formats, or contain edge cases
or a specific set of instructions.

https://www.gem5.org
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Fig. 1. SearchSYS diagram starts with the generation phase, where the
LLMs generate C programs which take parameters via the command line.
It compiles them. Then it applies the fuzzing phase, using the customized
version of AFL, which is able to mutate both the executable binary and its
parameters. Finally, in the differential testing phase, it compares each mutated
executable binary in both the simulator and the real ARM architecture.

not only provides the program to be simulated but also
specific inputs for it, which our special version of AFL++
search will modify along with the program itself.

3) Differential Testing Module: This module compares the
outputs of the simulator with those of the real ARM
architecture. We run the specific binary files and their
inputs on a real ARM machine and check if the outputs
from it and the simulator match. Any discrepancies are
identified as mismatches.

A. LLM-based test code generation

The first step of SearchSYS focuses on creating a corpus
of test cases with parameterized inputs. To achieve this, we
query a large language model (LLM). The LLM generates the
test cases as C source code and provides the types for the input
parameters. The query prompt given to the LLM specifies
the tasks the program should achieve and also requests it to
provide the corresponding parameters and their types.

We employ a zero-shot prompting technique [24]. That is,
the LLM is not given any prior examples or context. Hence
we have to provide all the information the LLM needs about
the specifics of the problem in its query prompt (see shaded
example in Listing 1). We construct a prompt to generate a
new test program, repeated n times to produce n programs,

where n can be arbitrarily large. In total, n + 1 prompts
generate n test programs. One prompt for setting the LLM’s
role plus n prompts to generate n test programs.

a) Setting the LLM role: Before generating the n test
programs, a single one-off LLM prompt initializes the process.
This one-off LLM prompt serves to set the LLM’s role. This
LLM prompt specifies the programs to be generated (e.g.
“generate C programs with arguments as input”). Since each
LLM has memory 4, we only need to set LLM’s role once.

b) Generating a test program: The LLM prompt starts
with a problem description that specifies the program tasks and
the context in which these programs are to be generated. The
problem description contains specific gaps that will be filled
with the tokens. A total of 4089 tokens are available as part of
SearchSYS. Table I describes the three token types across 4
categories of tokens with a few examples. The first and second
types of tokens are derived from compiler optimization names
and compiler parts. The third token is chosen at random from
general tokens related to programming languages, tutorials,
or standards. The fourth tokens category in Table I includes
phrases taken from the C17 standard [25], such as "initialize"
and "pointer". For instance, we might ask for examples of dead
code elimination, handling of the Abstract Syntax Tree (AST),
and a beginner tutorial name in C programming examples,
corresponding to the first, second, and third tokens.

The template prompt is shown in Listing 1.

" Coding t a s k : g i v e me a program i n C wi th a l l
i n c l u d e s . I n p u t i s t a k e n v i a a rgv on ly .
P l e a s e r e t u r n a program (C program ) and a c o n c r e t e
example o f an i n p u t (BASH ) . The C program w i l l be
wi th code t r i g g e r i n g " + <Token −1> + " o p t i m i s a t i o n s ,
c o v e r s t h i s p a r t o f t h e c o m p i l e r " + <Token −2> + " ,
and e x e r c i s e s t h i s i d e a i n C : " + <Token −3> + " .
To r e c a p t h e code c o n t a i n s t h e s e : " + <Token −1> +
" and " + <Token −2> + " and " + <Token −3 >;

Listing 1. Template prompt for generating C test programs with random
tokens

The value of the <Token-n> comes from the three
different components and is chosen at random from within
each corpus. This process fully automates the fuzzer’s input
generation and improves the diversity of the test inputs.
Additionally, it is independent of the specific LLM being used.

B. Fuzzing

SearchSYS’s fuzzing process mutates both the binary
program and its inputs. When employing bit-flip mutation,
as standard in AFL++, context consideration is crucial.
Mutations causing binaries to fail to load or execute even a
single instruction lead to inefficient SUT testing, reducing
the likelihood that developers will invest time in identifying
or fixing bugs. For instance, binaries failing with errors
like "error while loading shared libraries:
unsupported version 0 of Verneed record"
due to bit-flips are unlikely to receive fixes from developers
since the correct behaviour for faulty binaries is to crash. To

4i.e. the LLM’s consistency within a session.



TABLE I
THE FOUR C TOKEN CATEGORIES WHICH ARE USED TO FILL GAPS IN THE TEMPLATE USED TO PROMPT THE LLMS AND A FEW EXAMPLES OF EACH

ID Type Category #Tokens Examples

1 Token-1 Compiler Optimizations 26 "Scalar Optimizations", "Dead Code Elimination", "Constant Folding"
2 Token-2 Compiler Parts 36 "Sema", "Serialization", "Parse", "Lex", "AST"
3 Token-3 Domain Problems 197 "C Program to Sort an Array using Merge Sort", "Calendar Year in Different Formats",

"input includes several arguments"
4 Token-3 Compiler Standard Indices [25] 3830 "AND operators", "cimagl function", "EOF", "locale", "pow", "SCNiMAX"

address this, SearchSYS employs a custom bit-flip mutation
operator that controls the number and frequency of bit-flips,
applying them only to a program’s compiled binary file. This
avoids applying bit-flips to arguments or type information,
preserving the structure of the test input.
SearchSYS applies three mutation operators for testing

system simulators:
1) A bit-flip operator for modifying a program’s compiled

binary file.
2) A range-enhanced operator for editing argument values

within their specified type range.
3) An operator for changing the value’s type.
Operator (2) uses type information to ensure arguments

remain valid, while Operator (3) randomly changes the type,
such as from INT32 to LONG, potentially exposing memory
safety issues in the SUT. We support all integer types, float,
double, and strings but have not yet implemented pointer
support. Figure 2 and Figure 3 provide examples of value
(operator 2) and type mutations (operator 3), respectively.

1 ./mutator_args.so test.o, 5:INT, 20:LONG , "Hi":
STRING

2 After Mutation: test.o, 10:INT, 20:LONG, "House":
STRING

Fig. 2. Example of mutation operator (2) changing argument values: first
argument: 5 to 10 and third: "Hi" to "House" (second argument unchanged).

1 ./mutator_args.so test.o, 5:INT, 20:LONG , "Hi":
STRING

2 After Mutation: test.o, 5:LONG, "20":STRING, "Hi":
STRING

Fig. 3. Example of mutation operator (3) changing argument types: first
argument from INT to LONG and second argument from LONG to STRING.

SearchSYS loads all three mutators (1-3) using the exist-
ing AFL++ option, allowing AFL++’s heuristics to select the
next mutation operator. However, we decrease the probability
of choosing (2) by setting it to only 99.5% of the times AFL++
selected it originally and replacing the remaining 0.5% with
mutator (1), as AFL++ favours this operator due to its low
failure risk, which is too conservative for fuzzing.
SearchSYS extends AFL++ by evaluating new test in-

puts in the form of binary name, arguments list,
types. Then it applies mutation operators directly to the
compiled binaries, their arguments, or their arguments’ types.

This approach allows for more complex mutations, such as
binary file mutations.

Another factor affecting the throughput of fuzzing is the
number of mutation operations that AFL++ performs in a
single iteration. The parameter afl_custom_fuzz_count
controls the number of times a test input should be mutated
and executed against the target. A lower value reduces the
risk of iteration failure but can lead to inefficient fuzzed input
generation due to iteration overhead. Following our results [5],
we set afl_custom_fuzz_count to be 17, 84 and 66
for Operator 1, 2 and 3 from Section III-B, respectively.

C. Differential Testing

Fuzzed test inputs can uncover crashes, hangs and mis-
matches between the architecture and the system simulator.
However, AFL++ only identifies a bug if the test input leads to
a crash or a hang, degrading SearchSYS’s ability to detect
missimulation issues. To address this, SearchSYS follows
the approach of Even-Mendoza et al. [26] and separates
fuzzing and differential testing. That is, after fuzzing we
perform differential testing by comparing runs using fuzzed
test inputs (i.e. mutated executable binaries and their inputs)
on ARM hardware (native) with those on the simulator with
ARM ISA.

D. Implementation

SearchSYS is implemented using a mixture of languages
and Unix shell scripts. Specifically, we use (1) Java with
Ollama for LLM-based test input generation, (2) C/C++ for
the custom mutator and fuzzing-related code, and (3) a set of
scripts for configuring the testing environment [3], [5].

When adapting SearchSYS for ARM, we encountered
minor script issues related to the linker and data from
TinyLlama, the latter caused an early termination in AFL++
fuzzing due to memory errors. Additionally, we had to pass
ARM as the ISA parameter, though no modifications were
needed for the Python configuration script. We continued to
use the example script provided by the SSBSE Challenge
Track 2023 organizers5. These adjustments required minor
modifications to our scripts (setting the testing environment,
fuzzing and differential testing parts).

The code in parts (1) + (2), required no further modifica-
tions. However, in between this version and [5], we made some
bug-fixing edits in the C/C++ code.

5hello-custom-binary.py

https://github.com/BobbyRBruce/gem5-ssbse-challenge-2023/blob/stable/ssbse-challenge-examples/hello-custom-binary.py


IV. EVALUATION

To assess the quality of gem5 as a simulator for ARM
architectures, we aim to answer the following questions:

RQ1: Considering that large language models (LLMs) gener-
ate test suites independently, how effective are these test suites
at identifying bugs in gem5’s ARM simulation processes?

To answer this question, we will ask LLMs to generate
test suites, which will later be used as seeds for the fuzzing
process. Each test program (of a test input in the suite) will
be generated using a different prompt: SearchSYS generates
random tokens (Section III-A), embeds the random tokens into
the template prompt in Listing 1 to form a complete prompt,
and prompts the LLM with the constructed prompt to generate
a new test program. These steps are part of SearchSYS’s test
input generation system (Section III).

This research question will help determine which specific
language models are more effective at generating test suites
that can uncover bugs in the simulator, under the current
prompting mechanism (Section III-A). In this evaluation, we
will identify the best language model for finding bugs in
the ARM simulation process and uncover specific bugs. Our
process will also ensure a minimum set of test cases after
reducing the test suite using afl-cmin6.

RQ2: How effective is SearchSYS at identifying bugs in
the simulation of the ARM architecture performed with gem5
after the fuzzing process?

To answer this research question, we will run the fuzzing
strategy using the different test suites generated by each LLM
as seeds. The fuzzer will run against the simulator, with the
generated inputs focusing not only on identifying crashes
and hangs within the simulator but also on mismatches in
differential testing by comparing the output of the generated
tests with that of a real ARM machine.

A. Hardware

We ran tests on gem5 using two machines: (1) a single
CloudLab7 [27] m400 machine with 64 GB RAM, ARMv8
64-bit architecture with a single socket, 2.4 GHz, 8 cores,
and 1 thread per core, running Ubuntu 22.04 ARM, and
(2) a single machine (UCL) with 224 CPU cores (Cavium
ThunderX2 CN9975, 2.0 GHz) and 130 GB RAM, ARMv8
64-bit architecture with 2 sockets, 28 cores per socket, and
4 threads per core, running Red Hat Linux (aarch64-redhat-
linux-gnu). We installed the same compiler versions, adapted
for ARM, and set up the same tools as described in [5], on
both machines. The exact specification can be found in [28].

B. Experiments

For the experiments, we selected ARMv8 hardware and the
ARM ISA, given its relevance from the industry’s perspec-
tive [19]. The primary objective was to provide a comprehen-
sive evaluation of SearchSYS’s performance across different

6afl-cmin and afl-cmin’s manpage
7See https://docs.cloudlab.us/hardware.html

architectures. To achieve this, we compared the bug-finding
effectiveness and fuzzing throughput of SearchSYS between
the ARM ISA and X86 ISA, as previously explored in [5].
We followed the experimental procedure outlined in [5], but
adapted it for the ARM ISA and ARMv8 hardware, running
without Docker. Furthermore, the experiments were repeated
5 times (instead of 10), using the minimized input corpora, as
these have been shown to be more stable during fuzzing and
in particular for SearchSYS [5], [29], [30].

The minimized input corpora TinyLlama, Phi2,
Llama2, Magicoder, CodeBooga and GPT-3.5-turbo
were taken from [5], [6], while GPT-3.5-turbo (SSBSE
2023) from [3], [4].

Each fuzzing campaign ran for 24 hours, with five indepen-
dent repetitions of the fuzzing process per minimized input
corpus. The throughput results of the fuzzing experiments were
calculated as the mean value across these five repetitions,
ensuring consistency and robustness in the findings. The
differential testing post-fuzzing (i.e. when gem5 differed from
the real hardware) was done using the last repetition, for all 7
corpora. In case of a mismatch, to determine if the mismatch
is a genuine bug, we compared the results from the gem5
simulation with ARM ISA to those obtained via the two ARM
hardware (Section IV-A).

V. RESULTS

In this section, we present the outcomes of our experiments,
specifically, bugs found from the initial corpus of LLM-
generated test inputs, and those found as a result of fuzzing
campaigns. To detect bugs, we cross-validated our results
between an X86 and two ARMv8 machines. One of these
ARMv8 machines is being configured to be more strict, often
initializing uninitialized local variables to zero.

In total, we reported 4 bugs from the LLM-generated test
inputs [31]–[34]. We further identified a bug in the GNU
Multiple Precision Arithmetic Library (GMP 6.1.0) during
cross-system testing [35].

A. Bugs Detected from LLM-generated Test Inputs

To evaluate LLMs as sources of inputs for regression testing
of system simulators, we used 7 sets of LLM-generated test
inputs, created during 25-hour runs with different LLMs with
qualitative and quantitative evaluation and analysis of LLM-
generated test inputs detailed in [3], [5]. Here, we focus on
ARMv8, noting that LLM test program generation is agnostic
to X86 or ARM CPU. We classified the bugs found for each of
the 7 sets of simulations with ARM ISA against real ARMv8
machines and compared the bug finding rate with our previous
results on the gem5 X86 backend [5].

Table II shows the bugs identified in our investigation
from the LLM-generated test inputs. Table II includes the
bug description (“Bug”) with a bug number if already
reported to the gem5 bug tracking system. Columns A
to G represent the number of test inputs triggering this
bug category: A: TinyLlama, B: Phi2, C: Llama2,
D: Magicoder, E: CodeBooga, F: GPT-3.5-turbo and

https://github.com/AFLplusplus/AFLplusplus/blob/stable/afl-cmin
https://manpages.ubuntu.com/manpages/focal/en/man1/afl-cmin.1.html
https://docs.cloudlab.us/hardware.html


TABLE II
BUGS FOUND IN GEM5 WITH LLM-GENERATED TEST INPUTS. COLUMNS A TO G HOLD THE NUMBER OF INSTANCES OF EACH BUG FOUND BY EACH
LLM: A: TINYLLAMA , B: PHI2, C: LLAMA2, D: MAGICODER , E: CODEBOOGA , F: GPT-3.5-TURBO AND G: GPT-3.5-TURBO (SSBSE 2023).

BUG A B C D E F G

Bug #1527 (panic) 1 1 5 1 1 0 0
Bug #1544 (Missing support) 0 0 2 3 6 5 0
Bug #1547 (Missing support) 0 0 0 1 7 0 0
src/sim/syscall_emul.cc:67: fatal: syscall dup3 (#24) unimplemented 0 0 0 3 0 14 0
src/sim/syscall_emul.cc:67: fatal: syscall pipe2 (#59) unimplemented 0 0 0 1 1 0 0
src/sim/syscall_emul.cc:67: fatal: syscall clock_getres (#114) unimplemented 0 0 0 0 0 1 0
src/sim/syscall_emul.cc:67: fatal: syscall clock_nanosleep (#115) unimplemented 0 1 8 7 4 4 0
src/sim/syscall_emul.cc:67: fatal: syscall wait4 (#260) unimplemented 0 0 2 0 0 0 0
instruction ‘bti’ unimplemented 20 17 81 127 51 202 4
Bug #1629 (some time functionality unimplemented) 0 0 0 2 1 28 0
some thread functionality unimplemented in SE mode 0 0 0 1 0 10 0
Variable’s value is random in ARM but fixed in simulation 0 0 0 2 1 7 0
Timeout 1 2 4 27 15 15 1
Totals (of number of test inputs exposing a bug) 22 21 102 175 87 286 5

G: GPT-3.5-turbo (SSBSE 2023). The bugs found include
panic errors, usually triggered by assertion violation, timeouts,
and different outputs including fatal errors triggered by wrong
or missing instruction implementation for ARM ISA, revealing
gaps in the system’s support for ARMv8 functionalities. We
ran the differential testing scripts comparing the result of the
native run on ARMv8 machines against the simulation with a
time out of 50 seconds and a memory limit of approximately
90 MB (stack size) for both the gem5 simulation and the
native run.

In total, GPT-3.5-turbo found the highest number
of issues (286), followed by Magicoder (175), Llama2
(102), CodeBooga (87), TinyLlama (22), and Phi2 (21).
GPT-3.5-turbo (SSBSE 2023) had the fewest, with only
5 instances. Two of these bugs, panic and timeout, were
identified by executing the simulator, totalling 74 test cases
(9 panic and 65 timeouts), while an additional 624 bug-
activating test cases were identified using differential testing.

The differing results for GPT-3.5-turbo (SSBSE 2023)
compared to the GPT-3.5-turbo set, even though both
are using the same language model, can be attributed to
three factors: (1) GPT-3.5-turbo (SSBSE 2023) dataset
was generated in 2023, while GPT-3.5-turbo dataset was
generated in 2024, (2) GPT-3.5-turbo (SSBSE 2023)
was trained on the LLVM test suite, likely overlapping with
tests already evaluated by gem5, and (3) GPT-3.5-turbo
(SSBSE 2023) used a few-shots approach instead of zero-
shots, with zero-shots generally providing better input diversity
and throughput [5]. We observed these differences for the bug
count results during the pre-fuzzing test input generation stage
(Table II), but as well in the results from the fuzzing and post-
fuzzing stages (to be discussed in Section V-B).

These LLM test cases are a suitable contribution to gem5’s
C++ unit tests (as regression tests). They have several lines of
code, are efficient (as they commonly terminate in under 50
seconds) and are human-readable. With some semi-manual fil-
tering, to remove tests triggering undefined behaviour or those

expecting complex input or having large output, these can be
grouped according to coverage and instructions triggered to
target untested areas of the current regression tests of the gem5
test suite. Furthermore, test inputs exposing unimplemented
features can be saved for future use. For example, tests
triggering unimplemented system calls can be saved for future
use (e.g. to implement test-case-driven development methods).

In most cases, unimplemented syscalls represent a gap in
gem5 functionality which the gem5 developers do not intend
to plug, but the bug report itself is helpful since it can alert
gem5 users to a now-known issue, saving them time trying
to resolve what was previously an issue known only to the
developers.

In gem5 using SearchSYS, we found around 530 test
inputs exposing missimulations and errors and 30 test inputs
exposing optimization issues (timeouts) on X86 ISA [5] com-
pared to around 630 and over 60 instances on ARM. Note,
that the ’530’ and ’30’ instances on X86 are not a subset of
the 630 and 60 instances on ARM and reflect different bugs.
This suggests that contrary to expectations [19], ARM is no
more stable than X86 ISA in gem5, as given the same set of
test inputs, more of them exposed an issue.

We reported four new bugs from the LLM-generated test
inputs to the gem5 bug tracker [31]–[34] under “arch-arm”
tag. These bugs were not previously identified during our X86
fuzzing campaigns [3], [5], except for bug #1629 [34], which
we expected to be properly implemented in ARM. While we
anticipated that ARM would be generally more stable than
X86, the occurrence of this bug in ARM was unexpected,
prompting us to report it immediately. We excluded unimple-
mented issues from bug reports, as these represent new test
cases rather than valid bugs.

https://github.com/gem5/gem5/issues/1527
https://github.com/gem5/gem5/issues/1544
https://github.com/gem5/gem5/issues/1547
https://github.com/gem5/gem5/issues/1629
https://github.com/llvm/llvm-test-suite/tree/main/SingleSource


RQ1 Answer. All of the LLMs found bugs in gem5’s
simulation of ARM CPUs. We found 13 bugs, six
are unimplemented system calls functionality in the
simulator. We have already reported four (#1527 #1544
#1547 #1629). Of these three have already received
detailed consideration by the gem5 development team.

B. Fuzzing as Part of the Testing Process

SearchSYS is an AFL++-based tool. After generating test
inputs using LLMs and compiling them into a test case (binary,
input, and input type info), we fuzzed an instrumented version
of gem5 for 24 hours to have sufficient time to explore the
codebase of a specific gem5 version [36].

Table III shows throughput during 24 hours of fuzzing,
detailing the number of new test inputs generated for each
of the 7 minimized input corpora (from each of the LLMs
used). The columns “Initial Corpus” indicates the size of each
initial corpus at the start of the fuzzing, “Fuzzed Corpus (Std
Dev)”, “Queue (Std Dev)”, “Crash (Std Dev)” and “Hangs (Std
Dev)” are means over five trials per corpus with their observed
standard deviations. The “Fuzzed Corpus” column shows the
total number of test inputs generated (i.e. queue + crashes
+ hangs). At the end of each 24-hour fuzzing campaign, we
recorded: (1) “Queue” (test inputs generated by AFL++ that
did not crash or hang and were therefore suitable for further
mutation), (2) “Crash” (number of crashed test inputs), and
(3) “Hangs” (number of hanged test inputs).

The minimized input corpora vary in size, with approxi-
mately 100 test inputs generally being recommended [29],
[30]. During fuzzing, the highest throughput (in total)
of fuzzed test inputs was achieved (on average) by
GPT-3.5-turbo (SSBSE 2023) with 997 fuzzed test
inputs, followed by Magicoder (986), Llama2 (948),
GPT-3.5-turbo (888) and CodeBooga (839). The smaller
LLMs had a lower throughput during fuzzing: TinyLlama
(776) and Phi2 (680). This trend was slightly different when
observing the queue size only (the fuzzed test inputs for
differential testing post fuzzing), with Magicoder achiev-
ing the highest rate with 962 fuzzed test inputs, followed
by GPT-3.5-turbo (SSBSE 2023) with 945 fuzzed test
inputs. This is different from the pattern we already re-
ported in [5] for X86, where GPT-3.5-turbo (SSBSE
2023) and TinyLlama achieved the best throughput while
GPT-3.5-turbo had extremely poor fuzzing throughput.
Lastly, CodeBooga showed a large standard deviation across
all measured outputs (Queue, Crash, and Hangs), while
Llama2, Phi2, and TinyLlama had high deviations in
some outputs, though smaller than CodeBooga’s. The re-
maining LLMs exhibited generally smaller standard devia-
tions. Despite these variations, the minimized input corpora
typically generated between 700 and 1,000 test inputs during
24 hours of fuzzing.

Table IV: shows the bugs identified by comparing when
gem5 simulated the mutated binary programs with run-

ning them on the real hardware. Table IV includes the
bug description (“Bug”) with a bug number if already
reported to the gem5 bug tracking system. Columns A
to G represent the number of test inputs triggering this
bug category: A: TinyLlama, B: Phi2, C: Llama2,
D: Magicoder, E: CodeBooga, F: GPT-3.5-turbo and
G: GPT-3.5-turbo (SSBSE 2023). Note “Crash” and
“Hangs” from Table III: (1) Table IV does not include timed-
out fuzzed test inputs counters since these are already stated
in Table III in the “Hangs” column; and (2) not all instances
counted in the “Crash” column of Table III represent gen-
uine crashes; some are due to corrupted binaries or non-
reproducible crashes. Since AFL++ categorizes all these as a
single “Crash” type, we included these in Table IV and refined
it for a more detailed breakdown.

Table IV identifies hangs and 7 distinct issues discovered
during a manual inspection of automatically flagged
mismatches, warnings, and crashes. During 24-hour fuzzing,
TinyLlama had the highest number of fuzzed test inputs
exposing issues (87), followed by GPT-3.5-turbo (31),
Magicoder (10), Phi2 and Llama2 (6 each), and
CodeBooga (3). Most fuzzed sets identified 2-3 distinct
issues, with GPT-3.5-turbo finding 4 distinct ones. As in
Table II, GPT-3.5-turbo (SSBSE 2023) had the lowest
bug-finding rate with only 2 instances, each of a different
issue category.

Some previously known bugs were encountered during
fuzzing, generating further examples of the issue, which can
be useful for bug localization and debugging. We found one
“Out of Memory” instance. This indicates that fuzzing can be
beneficial, though it suggests that longer fuzzing runs may be
necessary for uncovering additional bugs and a better under-
standing of the codebase code coverage. During fuzzing, we
also identified a fatal error in src/mem/port_proxy.hh
readBlob, which at first, looked like a genuine error. How-
ever, comparing the results between the two ARMv8 ma-
chines, with the simulation failing only on the UCL machine
(Section IV-A) led us to conclude that it is likely to be a
configuration issue rather than an ARM ISA bug, and thus we
excluded these from the tables.

To recap, during the fuzzing campaign, three of these
bugs, panic, out-of-memory and timeout, were identified by
executing the simulator, totalling 93 test cases (19 panic, 1
out-of-memory and 73 timeouts), while an additional 126 bug-
activating test cases were identified using differential testing.

Fuzzing is a time-intensive process, and as such is unsuit-
able for regular runs of regression tests, where the developer
requires feedback quickly. However, due to its ability to
produce diverse inputs covering unexpected branches, it could
be valuable for use in less common, but large test suites, such
as those run between new releases, where there is a larger
time budget. Fuzzing can then help identify obscure bugs
which may not have been caught during the other stages of
development. In the context of gem5, fuzzing of weekly or
release versions can be integrated into the TestLib process of
gem5, which can include using Docker containers to provide

https://github.com/gem5/gem5/issues/1527
https://github.com/gem5/gem5/issues/1544
https://github.com/gem5/gem5/issues/1547
https://github.com/gem5/gem5/issues/1629


TABLE III
NUMBER OF GEM5 TEST INPUTS GENERATED BY EACH INITIAL CORPUS (BY LLM, MEAN AND STANDARD DEVIATION OF 5 RUNS). SEE SECTION V-B

Initial Corpus Fuzzed Corpus (Std Dev) Queue (Std Dev) Crash (Std Dev) Hangs (Std Dev)

TinyLlama 206 776 (±59) 737 (±59) 29 (±4) 10 (±1)
Phi2 366 680 (±87) 651 (±82) 14 (±6) 15 (±3)
Llama2 613 948 (±62) 916 (±62) 16 (±6) 16 (±3)
Magicoder 719 986 (±41) 962 (±42) 13 (±2) 11 (±3)
CodeBooga 612 839 (±112) 816 (±106) 11 (±7) 12 (±6)
GPT-3.5-turbo 703 888 (±26) 871 (±24) 11 (±3) 6 (±3)
GPT-3.5-turbo
(SSBSE 2023) 442 997 (±34) 945 (±34) 49 (±5) 3 (±3)

TABLE IV
DIFFERENTIAL TESTING RESULTS. BUGS FOUND IN GEM5 DURING 24-HOUR FUZZING OF THE LAST REPETITION. COLUMNS A TO G HOLD THE NUMBER
OF INSTANCES OF EACH BUG FOUND BY INITIAL MINIMIZED INPUT CORPUS: A: TINYLLAMA , B: PHI2, C: LLAMA2, D: MAGICODER , E: CODEBOOGA ,

F: GPT-3.5-TURBO AND G: GPT-3.5-TURBO (SSBSE 2023). (SEE SECTION V-A FOR EXPLANATION OF DIFFERENCES BETWEEN F AND G.)

BUG A B C D E F G

src/sim/syscall_emul.cc:67: fatal: syscall dup3 (#24) unimplemented 0 0 0 0 0 4 0
src/sim/syscall_emul.cc:67: fatal: syscall pipe2 (#59) unimplemented 0 0 0 0 1 0 0
src/sim/syscall_emul.cc:67: fatal: syscall clock_nanosleep (#115) unimplemented 0 0 0 4 0 7 0
instruction ‘bti’ unimplemented 21 3 3 5 1 19 1
Out of Memory 0 0 0 0 1 0 0
Likely to be Bug #1544 (Missing support) 56 0 0 0 0 0 0
Bug #1527 (panic) 10 3 3 1 0 1 1
Totals (of number of test inputs exposing a bug) 87 6 6 10 3 31 2

a consistent environment for fuzzing as in [37], ensuring
reproducibility and isolating system dependencies. Further-
more, SearchSYS, a coverage-directed fuzzer, can assist in
exploring newly added code by using partial instrumentation or
tailoring the mutators, enabling deeper testing of the codebase
of gem5.

Our fuzzing campaigns have uncovered further bugs and
produced a larger corpus of test cases than LLM-generated
tests alone. We found crashes and hangs using all LLMs tested.
Even with small LLMs such as TinyLlama, fuzzing was able
to grow the corpus size from 206 input tests to 776 input tests,
including finding 29 crashes, and 10 hangs.

RQ2 Answer. SearchSYS generated 30 000+ test
cases for gem5. The majority of bugs, except for panic
errors, out-of-memory and timeouts, were identified
using our differential testing mechanism. gem5 devel-
opers’ feedback reveals that SearchSYS’s ability to
tie test cases to particular features of the ARM ISA
is of great importance, and could help with ongoing
development of gem5 also for RISC V and other ISAs.

VI. DISCUSSION

The use of LLM-generated test inputs has proven to be a
valuable method for uncovering new bugs within the gem5
system, particularly when evaluating the ARMv8 ISA. During
our experiments, 7 distinct sets of LLM-generated inputs were
used, and the bugs identified were systematically categorized

based on their occurrences in simulations. Notably, we discov-
ered a range of panic errors, timeouts, and fatal errors, predom-
inantly triggered by assertion violations or improper/missing
instruction implementations for ARM ISA. This highlights
significant gaps in gem5’s support for ARMv8 functionalities.

Our comparative analysis revealed that ARM is not neces-
sarily more stable than the X86 ISA within gem5, contradict-
ing previous expectations [19]. This higher incidence of issues
on ARM suggests that there are still considerable challenges
to achieving parity between the support for ARM and X86
within gem5.

The efficiency and human readability of the LLM-generated
test cases make them excellent candidates for integration into
gem5’s C++ unit tests as regression tests. They run quickly
and we can exclude tests that trigger undefined behaviour,
require specific input, or produce large outputs. This allows
for targeted testing of untested areas, improving the overall
robustness of the gem5 test suite. In addition, tests that reveal
unimplemented features can be earmarked for future develop-
ment, supporting a case-driven test development approach.

As mentioned in the next section, recently LLMs have
proved very popular in software engineering research and
their rapid development means any paper will lack recency,
nonetheless our selection of LLMs provides good coverage.
The analysis in [5] required approximately 3500 hours of
machine time. There is no need to repeat the LLM-based
test program generation as: (1) by the time the analysis is
completed, newer LLM versions would render it outdated, and



(2) it is CPU-agnostic8, relying on GPU or OpenAI platform.
Our fuzzing campaigns significantly expanded the corpus

size and identified numerous crashes and hangs across all
LLMs. For example, even with a smaller LLM such as
TinyLlama, the initial corpus size grew considerably,
uncovering several crashes and hangs. This demonstrates
the ability of fuzzing to produce diverse inputs that explore
unexpected branches, making it a valuable complement to
other testing methods.

For corpus seed generation, the primary objective was
achieving a high compilation rate for effective test program
generation, leaving test input diversification to fuzzing. The
compilation rate is critical [26], [38], for two fundamental
reasons: (1) in grey-box fuzzing, the priority is on seeds
enabling the fuzzer to explore less-covered areas effectively,
especially when the diversity metric relevant to the SUT is
unknown to the LLM, and (2) diverse but failed to compile
code is useless, as it yields no executable for simulation.
This objective is unlikely to be fully achieved with prompt
engineering alone, and we leave this to future work. None-
theless, frameworks like ROCODE [39], which achieve higher
compilation rates via backtracking and code analysis, might be
used with SearchSYS to enhance its bug-finding capabilities.
SearchSYS implements a differential testing approach to

uncover missimulation bugs (Figure 1). Hence, it requires
access to physical hardware matching the simulated architec-
ture, as the correct output of the test inputs may be difficult
to determine. This challenge is commonly known as the
oracle problem [40]. We acknowledge that access to diverse
physical hardware may not always be feasible. In such cases,
alternative strategies may be explored, such as leveraging
similar architectures or replacing the hardware with another
different simulator.

VII. RELATED WORK

There has been extensive interest in applying Large Lan-
guage Models to Software Engineering. For example, Hou et
al. [41] mention seven existing surveys (e.g. [42]) before their
own, which covers 2017 to the start of 2024 and includes 395
papers. However, neither Wang et al. [42] or the earlier Fan
et al. [43], nor the most recent Hou et al. [41] or [44] include
work directly on fuzz testing of simulators.

LLMs have already made an impact in industry (e.g. work in
Meta reported by Alshahwan et al. [16]). Other works include
[45], [46] where Feldt et al. argue for the use of testing to
kerb LLMs’ enthusiasm to make up answers. Also missing
from both surveys is Le et al. [47], where they propose using
LLMs to assist testing of software following the RESTful web
API architecture.

ChatFuzz (Hu et al. [48]) aims to improve fuzz testing. Like
our SearchSYS it uses an LLM to automatically generate
seeds for fuzz testing which are similar to existing seeds but
fit better to a given format. Where the format was simple

8Yet, we adjusted the dataset [5] by re-compiling the test input binaries for
the ARMv8 target.

Hu et al. [48] show it can do better than vanilla AFL++. How-
ever, they test only one LLM (ChatGPT), and test ChatFuzz on
three real-world benchmarks which require structured inputs
rather than an open-source simulator used by industry whose
inputs are executable programs.

Our approach leverages AFL++ (Section II-A), specializing
its application to mutate binary files and their inputs. Even if
this approach is uncommon, similar approaches can be found
in compiler testing [49], [50] and fuzzing network protocol
analysis [51],

Simulation tools like gem5 provide rich information for
evaluating architectures and have been widely used for dif-
ferent aspects of the ARM architectures [52]–[54]. Testing
complex systems, such as gem5, involves not only efforts to
verify its architectural compliance [55] and code integrity but
also deeper internal testing or verification methods, such as
SearchSYS, which are crucial for validating its numerous
options [56]. Similarly Xia et al.’s Fuzz4All [38] also uses
LLM to example code snippets for fuzz tester input. Although
they consider differential testing in fact in [38] they used
traditional “fuzzing oracles, such as crashes”.

Serebryany et al. [57] discuss a hardware fault diagnosis
tool employed in Google data centres, where test cases were
generated through software fuzzing of CPU simulators akin to
gem5. They highlight gem5 as a potential tool for future use.
On the other hand, Rajeev et al. [58] used gem5 to test their
fuzz inputs rather than fuzzing gem5 itself.

Our previous work [3], [5] stands out as the only instance
which has been using fuzzing to test gem5 so far. Initially, we
integrated LLMs and SBSE to test system simulators and de-
veloped a prototype of SearchSYS. With SearchSYS [5],
we fully automate the process and enhance the tool with
new mutation operators. Specifically, we advance the previous
work by having LLM generate an example program instead
of providing one ourselves, and by constructing independent
mutators to give automated feedback to AFL++ for mutation
selection. In addition, in this work, we show how this approach
supports testing the ARM architecture by also identifying deep
vulnerabilities in these kinds of systems.

VIII. CONCLUSIONS

In this work, we show how effective SearchSYS is at
generating tests for the gem5 software simulator. In particular,
we focus on the simulation of the ARM silicon chip Instruction
Set Architecture (ISA). SearchSYS uses LLM-generated
programs as seeds in a fuzzing campaign with specialized
mutation operators to generate test cases. Through differential
testing, we identified 624 bugs with LLM-generated test cases
and 126 with fuzzed test inputs. Out of the total number of
bug-activating test cases, 4 unique bugs have been reported
and acknowledged by developers. In 24 hours of compute
time SearchSYS typically generates about a thousand test
cases with their line coverage. Taking specifically the problem
of testing gem5’s implementation of the ARM instruction set
architecture, it would have taken a skilled engineer weeks to
generate test cases starting from the ARM ISA documentation.
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