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Abstract. Lenski’s experiments with E. Coli show Biology can sustain continual evolutionary
improvement. However long term evolutionary experiments (LTEE) with evolutionary
computing find that information theory’s failed disruption propagation (FDP) in deeply nested
genetic programming (GP) hierarchies can greatly slow adaptation. We propose that researchers
aiming at embodied artificial intelligence should control software robustness by using porous high
surface area geometrical architectures, perhaps composed of many shallow mangrove like tree
structures intimately linked to their data rich fitness environment.

1. Introduction
Rich Lenski has shown in biology evolution can retain its ability for continued change even after
75 000 generations [1, 2]. (Homo Sapiens appears to be about 9300 generations old [3].) He
started the long term evolutionary experiment (LTEE) in 1998 and it is still running. We have
shown genetic programming (GP) [4, 5] can do similarly when run for a million generations and
experiments can be run in days or weeks rather than years [6, 7]. However, information theory
(Section 3) explains why the rate of fitness improvement falls as very deep GP trees become
resistant to crossover. Mutation testing shows that human written software can also be resilient
to many source code changes and that there is a tendency for deeply nested code to be more
robust [8].

There are examples of software systems that exceed a billion lines of source code. Information
theory’s failed disruption propagation (FDP) [9] helps to explain why maintaining, testing and
debugging deeply nested codebases is hard and why software companies prefer unit testing
of modules (each of which is typically only shallowly nested) rather than system testing of
complete functional hierarchies. There is already SBSE [10] work on automatically optimising
test oracles [11]. FDP suggests software systems aught to be built with many densely packed
test agents so that disruption caused by bugs has little distance to travel before being discovered
by an oracle.

For evolutionary computing and artificial life experiments aiming for sustained innovation,
we propose the use of porous high surface area architectures composed of many small trees
which are intimate with their environment (see Figure 10, page 11). For continuous innovative
evolution the fitness function needs to be able to measure on average if genetic changes are good
or not. That is, they must have made a difference. This means we must overcome robustness,
without introducing chaos. We suggest this might be met by systems where the bulk of the
code remains close to the fitness environment and the disruption caused by most mutations and
crossovers has only a short distance to propagate in order to have a measurable fitness impact.
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The interested reader can find Koza’s early experiments and introduction to genetic
programming in his book [4]. Whilst the Poli’s “field guide” [5] is specifically aimed at students
and includes some more recent work.

In evolutionary computing “complexity analysis” has several meanings. For example it can
mean traditional computer science (Big O) complexity analysis, which aims at deriving formal
mathematics saying important things about solving particular problems such as how long it will
take on average and how runtime scales with the dimensions of the problem [12, 13]. Complexity
can also be in terms of information theory. With complex solutions containing more information.
Although strictly not computable, Kolmogorov defines the complexity of a string as the size of
shortest program able to reproduce the string. Vitanyi has shown in practise it can be estimated
using every day compression tools [14, 15, 16, 17]. Finally the size of solutions is often taken as
related to their complexity. However, without counter measures there is a tendency for solution
size to increase [18, 19]. Sometimes it is assumed that smaller solutions will be more human
comprehensible and so preferred and nowadays there are a variety of sophisticated anti-bloat
tools [20, 21]. Although size can be measured and Kolmogorov complexity can be estimated for
GP solutions [22], the information needed to reproduce the evolved program can fail to usefully
capture our notion of the complexity of the solution. For example, programs in a GP population
can all be different (i.e. their genotypes are not the same) and yet their behaviour (phenotypes)
are the same [7].

2. Sustaining “Thin” Evolutionary Machine Learning
One lesson we can take from the recent successes of artificial intelligence (AI) is that huge
AI systems can be created automatically when they are based on learning. That is, when we
automatically extract knowledge from training data, rather than manually encoding knowledge
into a computer based repository. We suggest in the hunt for the next level artificial intelligence
or machine consciousness [23], we should consider systems which, instead of assembling all the
training data and learning everything the system can do in one huge bout of training, we should
investigate systems which continually learn.

The next section gives a quick introduction to information theory and applying it to software,
showing that entropy loss leads to failed disruption propagation (FDP) and so to robust software
that is error tolerant. Section 4 shows an example of recent measurements of FDP in hand
written C, where deeper code tends to be more robust. This is followed in Section 5 by
studies of FDP in artificially evolved (genetic programming) code which shows, as expected,
deep nested hierarchies are also robust. The discussion (Sections 6 and 7) suggests FDP is
not only widespread in existing systems but that future AI systems must take it into account
and suggests the adoption of “thin” shallow data rich architectures. The second part of the
discussion (Section 7) considers the creativity of evolving systems and the widespread adoption of
genetic programming, before we conclude in Section 8 that to demonstrate automatic Embodied
Intelligence we need systems that continue to evolve and so recommend architectures that are not
too robust but instead permit continuous change. Therefore we should investigate architectures
composed of shallow code (i.e. the opposite of deeply nested code) which have a large exposed
surface facing a data rich environment.

3. Information Theory and Software
All computer operations are irreversible. Meaning in general given an operation’s output we
cannot infer its inputs. Figure 1 show this graphically. The left hand side of Figure 1 depicts
adding together two 32 bit floating point values to give a single 32 bit output. Because addition
is not reversible, given the output, we cannot infer the inputs. For example, 1.0 + 1.0 = 2.0 and
1.5 + 0.5 = 2.0, so given the output is 2.0 we cannot say what the two inputs were. That is, we
cannot reverse the computation and so information about the inputs has been lost.



We can say how much information there is by calculating the entropy of a distribution
of values. For example, the entropy of the input distribution and the entropy of the output
distribution. The difference between the two says how much information has been destroyed
by the operation. In fact, this can be done not just for a single operation but also for whole
programs. The right hand side of Figure 1 contains two plots. The solid line (red) shows the
distribution of integer values, which are added together to give the output (dashed blue). In the
example, both inputs are digits, i.e., the numbers 0 to 9. Here digits 0 and 1 are more common
than the other eight. (The example comes from C source code used in Section 4.) The graph
assumes each input is independent of the other and so the output is one of the nineteen integers
0 to 18. The dashed blue plot shows their distribution. The information content (entropy)
of either input is 2.88 bits. As they are independent, the information of them together is
2 × 2.88 = 5.76 bits. Note the information content (entropy) of the output is 3.75 bits. So this
(irreversible) addition has lost 5.76 − 3.75 = 2.01 bits of information. Entropy loss is inherent
in irreversible operations. I.e. all computation loses entropy.

In [9] we consider the informational impact of all forms of disruptions to the smooth execution
of software. We treat together all types of disruption, be they coding errors (software bugs),
source code changes introduced by mutation testing [24], subtree swaps made by genetic
programming crossover, transients due to cosmic rays, EM radiation inserted by a hostile
opponent, etc., as long as they change the state of the program during execution. For such
a disruption to be effective, that state change has to propagate from its origin to the program’s
output. If it does not, the program is robust to the error. From an information theory point of
view, information about the disruption has to propagate to the output. In nested hierarchies,
information loss is progressive. So that even partial information lost cannot be recovered. Hence
when information has to pass through many levels of nesting, all information about the disruption
may be lost, giving rise to failed disruption propagation (FDP). But as we have seen, because
digital computation is not-reversible, entropy (i.e. information) loss is inherent in calculation. So
we expect FDP in any deeply nested calculation. In fact, FDP is common even in languages with
side-effect (e.g. global variables in C/C++) that might allow information to by-pass function call
nesting. Thus in non-trivial software small transients tend not to have any knock on consequences
(Figure 2). Leading ordinary software to be robust to many errors [25].
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Figure 1. Left: Information Funnel. Computer operators are irreversible. Meaning input
state cannot be inferred from outputs. Information is lost. Right: red 0–9 actual distribution of
0–9 digits in C code (Section 4). Dashed blue 0–18 distribution when they are added. Although
the output of + is wider and has higher entropy (information content, 3.75 bits), it is smoother
and has less entropy than the combined entropy (5.76 bits) of the two inputs to + [8].



4. Failed Disruption Propagation (FDP) in Nested Software
In order to judge the variation in Failed Disruption Propagation (FDP) with depth, we took
some highly nested benchmark C code (i.e. VIPS) and inserted mutations into it at random [8].
We measured how deep the mutation was, and followed Voas’ PIE framework [27] to measure
which mutations were indeed Executed, which did change (Infect) state and then did that state
change Propagate from the mutation’s location to impact the outputs. Figure 4 shows in this
example, random C code changes deeper than 30 levels of function nesting tend to show FDP,
i.e. deeper human written code can be more robust.

VIPS is well established C code which in addition to function’s arguments and return values
makes heavy used of pointers and shared data. This means information flows both through
the nested hierarchy of function calls (like in genetic programming, next section) but also short
circuits the hierarchy by passing information via global data. Nevertheless we do see a weak
relationship between run time nesting depth and degree of failed disruption propagation. If
we exclude mutations which stopped the program immediately, e.g. with a segmentation error,
Figure 4 shows there is indeed some variation between mutations with FDP and those without
and their execution depth.

The PARSEC suite of benchmarks has been used to test parallel super computers for NASA.
It mostly consists of numeric algorithms but also includes some image processing tools, including
VIPS [28, 29]. VIPS is an image processing library of 90 000 lines of C source code. We chose the
vipsthumbnail application as it was known to contain some highly nested code. vipsthumbnail
runs in parallel threads (hence it is non-deterministic). It takes a large image and create a small
image (a thumbnail). By default the output is 128 pixels wide. We used a combination of Linux
perf and GDB [8] to profile vipsthumbnail and select just the parts of the VIPS library which
are heavily used in thumbnail generation (Figure 3). Almost all the unused C code was removed
so it could not be mutated This reduced the total library from 90 000 to 7 328 lines of code
spread over 37 files. We used the genetic improvement tool Magpie1 [30] to select uniformly at
random (independent of their depth) 1000 locations in the active C code to mutate and record
their runtime execution depth and their impact, if any, on the program’s output. The results
are summarised in Table 1.

Table 1 shows the code is robust to most mutations. Only 16.4% of mutations caused a
runtime error. Most of these stopped the program immediately, and there were only 37 where

1 https://github.com/bloa/magpie

Figure 2. Lorenz Butterfly considered harmful. Lorenz [26] viewed the world’s weather as
being chaotic and posed the question “Does the Flap of a Butterfly’s Wings in Brazil Set Off a
Tornado in Texas?” but entropy loss makes software robust not chaotic.

https://github.com/bloa/magpie


Figure 3. Left: 3264×2448 input image. Right: 128×96 thumbnail image generated by VIPS

Table 1. 1000 random Magpie VIPS mutants

Compiled, ran correct output 526 Correct output 438
Mutation is identical to original code 88

Failed to compile 302
Failed to run correctly or gave 164 exception 127
incorrect output output error 37
Magpie TypeError 8

the program terminated as usual but it generated output that was not identical to the unmutated
code. We know these 37 satisfy the PIE frame work. We selected at random 25 of them and
looked for 25 mutants amongst the 438 which changed the code and gave the right output. In
both cases we select mutants which are executed and which do change the program’s internal
state and we measure their execution depth. In most cases the mutants are executed more
than once, typically thousands of times, and at more than one depth. The 25 mutants which
encountered FDP and so gave the right answer (red) and the 25 (of 37) where the mutants
disruption reached the output (blue dashed) are plotted in Figure 4. Notice deep mutations
(y > 30) tend not to impact VIPS thumbnail output.

5. Convergence/Stasis in Genetic Programming (GP)
In a series of experiments we have run genetic programming (GP) on benchmark problems which
show GP populations continue to evolve and find better solutions even when run for up to one
million generations and evolving trees with up to two billion nodes. Due to a series of innovations
[31, 6, 32, 33, 34, 35, 19, 36, 37] in Andy Singleton’s GPquick [38] these experiments can be run
in days or weeks (rather than years or decades needed by Lenski).
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Figure 4. 25 VIPS mutations with no impact (mean depth +) and 25 which change output
(mean depth ×). Error bars show interquartile range. +× also show min and max depth. Notice
mutations with greater average depth tend not to impact VIPS thumbnail output.

These experiments show that GP runs may find thousands of innovations during an extended
run and although fitness improvement continues, it slows (Figure 5). These runs were allowed
to produce enormous trees and the rate of improvement is inversely proportional to the size of
the trees because failed disruption propagation in these strictly hierarchical systems means only
genetic events near the tree’s output make any difference (worse or better).

In tree GP programs are usually drawn as inverted trees (e.g. Figures 6 and 7), with the
output being taken from the root node, at the top of the diagram and the program’s inputs are
fed into it via the tree’s leafs. The leafs are shown towards the bottom of the diagram.

Figure 6 shows failed disruption propagation where the disruption is introduced at runtime
in an integer problem. The shaded nodes indicate the parts of the tree where inserting runtime
disruptions has some impact on the program’s output. FDP means in the bulk of the tree the
disruption has no impact (not shaded). As trees get bigger the sensitive area near the output
shrinks as a fraction of the whole tree.

Figure 7 shows an evolved floating point tree where the disruption is to change the program
and then re-evaluate it on all the test cases. The coloured oval nodes show the difference between
the evaluation in the original tree and the modified tree. The large black oval immediately above
the code disruption shows initially the internal evaluation is disrupted on all test cases. As with
Figure 1, the system is hierarchical and once information about the disruption is lost it is not
recovered higher up the tree. Thus if on a given test case the evaluation between the original
(mother) program and her offspring becomes the same, the evaluation above that point (i.e. closer
to the output) will remain the same. In particular if FDP occurs for a particular test case then
the evaluation of the two programs at the root node will be the same on that test case. So they
have the same output. If FDP occurs somewhere on all test cases, then it will succeed in hiding
the disruption and both programs will have the same output. Typically this means they have
the same fitness scores.
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Figure 5. Evolution of mean absolute error in ten GP runs of Sextic polynomial [4] with
population of 500. Runs to 100 000 generations (2 stopped early). Labels give number of
generations when fitness got better [6].

Figure 6. Example evolved solution (size 771) to Fibonacci problem [39]. Coloured shading
shows external impact of disrupting internal runtime evaluation by increasing it by 1 (smallest
possible change). Disruption at red nodes cause 16-20 test cases to fail. Blue 1 test case fails.
As predicted by information theory, failed disruption propagation (FDP) means inserting run
time errors far from the output (top) has little effect. Thus almost the whole program is not
affected on any test case (white).
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Figure 7. Trace of impact of crossover (red) in evolved tree. Replaced and new code are
both evaluated on the test set (48 tests) [33, 40]. The size and number in each node gives the
number of test cases where the evaluation of the parent and child are not identical. Their average
evaluation difference is indicated on a log scale by the node’s colour. Average differences greater
than 0.01 are shown with dark colours, less than 0.01 by brighter colours. Brightest yellow
shows smallest non-zero difference (RMS 3.1 10−10). If, as here, parent and child evaluations
are identical before reaching the root node, the remainder of the evaluation is not needed (gray
nodes) [35].

In Figure 7 the number of test cases where evaluation is different in the original and child
program is given as a number in the coloured nodes. As expected, this falls monotonically as we
move away from the disrupted code towards the root node. Although information theory does
not guarantee this (and counter examples do occur), in our floating point trees the size of the
difference in evaluation tends to fall. Figure 7 shows this using the colour of the shading, with
dark (black or blue) colours indicating large differences and fainter (yellow) showing evaluation
in the two programs are almost identical. If, as in Figure 7, at any point evaluation of the parent
and child programs become identical, evaluation at their root nodes must be identical, and so
their outputs must be identical. Hence evaluation can stop early and we can simply copy the
results from the first program to be the outputs of the new program.

Typically there is considerable variation between different trees in different GP runs,
nevertheless by taking averages across a large number of disruption locations Figure 8 is able to
plot a regression line showing the rapid exponential impact of FDP even when internal evaluation
is totally randomised. With floating point, information loss is slower but still rapid and so we
again see exponential fall off so that deep disruptions are unlikely to have any impact at all.

6. Implications for Future AI
In nested systems information once lost cannot be recovered. In particular as learning adapts
existing programs, information about the adaptation once lost during evaluation of the new
program variant can have no impact of the program’s outputs. That is, there is no learning signal;
externally we cannot tell if the adaptation was good or not. Without feedback, learning becomes
random and so continual improvement requires good information flow from the adaptation sites
to the program’s outputs.
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Figure 8. Complete information loss (FDP) becomes almost certain as depth increases when
disrupting a large solution to Fibonacci problem with a random value [39]. Dotted line ≈ 0.4 e−0.3

shows exponential fall in fraction of run time disruptions reaching output. Meaning the chance
of disruption falls by 1

2 as depth increases by 2.3 levels.

In simple functional systems (previous section) we saw rapid and complete information loss.
Similar to AC electrical power flow there is a skin effect: we can make the electrical conductor
as thick as we like but once it is wider than the skin depth, increasing the dimensions of the
conductor makes very little difference to its ability to carry power. So we can make code as
deep as we like, but any change we make will not have impact unless it is near the program’s
outputs. Unless it has external impact, it will be hard to measure if the change was a learning
step in the right direction or not.

In practice in digital computing the “skin depth” can be surprisingly small. In the previous
section, for a simple 32 bit integer experiment it was 2.3 function nesting levels. Of course in
systems we construct we can bias the location of changes to be near the surface, but then we
risk our system growing in complexity and size and so containing large volumes of code which
is out of the reach of future changes. Such systems might eventually carry the burden of huge
fossilised legacy code. Perhaps it was useful in the past but cannot now be maintained.

We suggest instead of having populations of huge trees, which resemble redwood sequoia trees
and are composed almost entirely of inert heartwood, perhaps we should investigate populations
which resemble mangroves (left Figure 10). Such systems might be composed of many evolving
trees, each being small and shallow but they would be embedded in a data rich sea. Each new tide
brings new inputs and moves outputs from one part of the forest to other data processing trees.
Figure 10 suggests other naturally occurring porous systems with a high surface area, which
might inspire development of thin learning systems, where adaptable code is closely linked to a
data rich environment.

Information theory is universal and so unless counter measures are taken we anticipate in
future scaling AI systems will have to take into account how to ensure most changes have some
measurable impact by ensuring there are short or at least low entropy loss routes from the



site of the change to some measurable point. In evolutionary computing terms, these are the
mutation or crossover points and the survival of the individual. If we are to evolve embodied
intelligence [41], as with Biology, we may distinguish between mutations etc. to the design
(analogous to DNA) and how they lead to changes of form (analogous to the organisms body or
phenotype). Again if feedback on the new design is to be available the information chain from
design changes to body/mind changes to measurable impact in the environment cannot lose all
the entropy. In digital devices such as software, we suggest, even in large systems, the route
from genotype (design) change to fitness measurement (phenotype survival) needs to be short.

Large complex systems are not inherently robust but if they are not they cannot be built or
survive. If a large system relies on all of its components working but they are fragile. It will
never be assembled. As it gets bigger the construction team will spend more and more of its
time fixing the components that have just broken, rather than completing construction.

In terms of exactly how we will scale AI the hope remains it can be assembled (or self
assemble) from small shallow structures. We can easily foresee a danger that such composites
themselves lose entropy and so become robust and hence do not easily adapt. Perhaps the fitness
environment (e.g. the sea or atmosphere in Figure 10) will not be sufficient and our evolving
architecture will have to include low entropy loss high fidelity channels (analogous to nerve cells
or optical fibres) embedded in the digital matrix. However, as always, there is a danger that
mandating this means we remain wedded to human designed systems where evolution makes
only short term adaptations rather than facilitating long term progress.

7. Artificial Creativity and Uptake of Evolutionary Artificial Intelligence

The creative power of AI in the form of evolutionary computing has been known for several
decades [42]. For example, Creative Evolutionary Systems [43] contains chapters from computer
generated music to novel fighter jet combat [44, p272–276], whilst Koza et al.’s 2003 book [45]
stresses genetic programming as a routine invention machine. Indeed the annual EvoMusArt
conference has been demonstrating computer creativity in the arts since its inception in 2012.
Similarly game playing has long been an application of AI, e.g. Checkers (draughts) [46, 47].
The creation of learning based machines which surpass the performance of all humans, has
not diminish human interest in games or sports. For example, people still run, even though
they know they will never be the best human runner in the world nor outpace a motorcycle.
Similarly people play chess and other games despite knowing that superhuman AI performance
is readily available. As with art, there are long established conferences and journals dedicated
to evolutionary and other learning based approaches to software based game playing, e.g. the
IEEE Conference on Games, which started (as CIG) in 2005.

A question raised recently [48, 49] was how much is GP used? Of course most industrialists
are not interested in papers. Indeed they may have sound commercial reasons for not publicising
their results or even saying what they are working on. This means numbers based on published
work will always be an underestimate [50]. Nevertheless data sampled from the genetic
programming bibliography for last year (2023) suggests 38±5% of published papers are primarily
on applications which just happen to use GP (Figure 9). Many applications relate to health
(e.g. [51, 52, 53, 54, 55, 56, 57, 58, 59]), civil engineering (e.g. [60, 61, 62, 63, 64, 65, 66, 67, 68])
or solid state materials, e.g. batteries [69, 70, 71, 72, 73].

https://link.springer.com/conference/evomusart
https://gpbib.cs.ucl.ac.uk/


Figure 9. An estimated 38±5% of papers from 2023 in the GP bibliography are on applications

Mangrove a Lungs b [74] Sponge c

Coral d Pumice e Zeolite f [75]
Figure 10. Possible natural sources of inspiration for software architectures suited to prolonged
evolution. They have a large surface area so that their volume lies close to a surface. Such
structures could provide a large space for evolving software whilst keeping most of the code near
to its environment (Wikimedia a b c d e, [75]f)

8. Conclusions
Information theory predicts that code changes will suffer failed disruption propagation FDP,
which makes both deeply nested automatically generated code evolved by genetic
programming (GP) and human written software resistant to change. In GP with an integer
representation the impact of even very large run time disruptions on average halved for each
increase in depth of 2.3 levels.

Therefore we advocate research into porous high surface area shallow code “mangrove”
architectures, where the adapting code is closely connected to a data rich environment. To
ensure that updates continue to have impact, the system must have limited robustness and so
limited code depth. Figure 10 shows a few natural structures with high surface areas, which
might inspire continual adaptation EI architectures.
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