
Sustaining Evolution for

Shallow Embodied Intelligence

W. B. Langdon and Daniel Hulme

Department of Computer Science, University College London, Gower Street, WC1E 6BT, UK

E-mail: w.langdon@cs.ucl.ac.uk, daniel@satalia.com

Abstract. Lenski’s experiments with E. Coli show Biology can sustain continual evolutionary
improvement. However long term evolutionary experiments (LTEE) with evolutionary
computing find that information theory’s failed disruption propagation (FDP) in deeply nested
genetic programming (GP) hierarchies can greatly slow adaptation. We propose that researchers
aiming at embodied artificial intelligence should control software robustness by using porous high
surface area geometrical architectures, perhaps composed of many shallow mangrove like tree
structures intimately linked to their data rich fitness environment.

1. Introduction
Rich Lenski has shown in biology evolution can retain its ability for continued change even after
75 000 generations [1, 2]. (Homo Sapiens appears to be about 9300 generations old [3].) He
started the long term evolutionary experiment (LTEE) in 1998 and it is still running. We have
shown genetic programming (GP) [4, 5] can do similarly when run for a million generations and
experiments can be run in days or weeks rather than years [6, 7]. However, information theory
(Section 3) explains why the rate of fitness improvement falls as very deep GP trees become
resistant to crossover. Mutation testing shows that human written software can also be resilient
to many source code changes and that there is a tendency for deeply nested code to be more
robust [8].

There are examples of software systems that exceed a billion lines of source code. Information
theory’s failed disruption propagation (FDP) [9] helps to explain why maintaining, testing and
debugging deeply nested codebases is hard and why software companies prefer unit testing
of modules (each of which is typically only shallowly nested) rather than system testing of
complete functional hierarchies. There is already SBSE [10] work on automatically optimising
test oracles [11]. FDP suggests software systems aught to be built with many densely packed
test agents so that disruption caused by bugs has little distance to travel before being discovered
by an oracle.

For evolutionary computing and artificial life experiments aiming for sustained innovation,
we propose the use of porous high surface area architectures composed of many small trees
which are intimate with their environment (see Figure 10, page 11). For continuous innovative
evolution the fitness function needs to be able to measure on average if genetic changes are good
or not. That is, they must have made a difference. This means we must overcome robustness,
without introducing chaos. We suggest this might be met by systems where the bulk of the
code remains close to the fitness environment and the disruption caused by most mutations and
crossovers has only a short distance to propagate in order to have a measurable fitness impact.

http://www.cs.ucl.ac.uk/staff/W.Langdon/

The interested reader can find Koza’s early experiments and introduction to genetic
programming in his book [4]. Whilst the Poli’s “field guide” [5] is specifically aimed at students
and includes some more recent work.

In evolutionary computing “complexity analysis” has several meanings. For example it can
mean traditional computer science (Big O) complexity analysis, which aims at deriving formal
mathematics saying important things about solving particular problems such as how long it will
take on average and how runtime scales with the dimensions of the problem [12, 13]. Complexity
can also be in terms of information theory. With complex solutions containing more information.
Although strictly not computable, Kolmogorov defines the complexity of a string as the size of
shortest program able to reproduce the string. Vitanyi has shown in practise it can be estimated
using every day compression tools [14, 15, 16, 17]. Finally the size of solutions is often taken as
related to their complexity. However, without counter measures there is a tendency for solution
size to increase [18, 19]. Sometimes it is assumed that smaller solutions will be more human
comprehensible and so preferred and nowadays there are a variety of sophisticated anti-bloat
tools [20, 21]. Although size can be measured and Kolmogorov complexity can be estimated for
GP solutions [22], the information needed to reproduce the evolved program can fail to usefully
capture our notion of the complexity of the solution. For example, programs in a GP population
can all be different (i.e. their genotypes are not the same) and yet their behaviour (phenotypes)
are the same [7].

2. Sustaining “Thin” Evolutionary Machine Learning
One lesson we can take from the recent successes of artificial intelligence (AI) is that huge
AI systems can be created automatically when they are based on learning. That is, when we
automatically extract knowledge from training data, rather than manually encoding knowledge
into a computer based repository. We suggest in the hunt for the next level artificial intelligence
or machine consciousness [23], we should consider systems which, instead of assembling all the
training data and learning everything the system can do in one huge bout of training, we should
investigate systems which continually learn.

The next section gives a quick introduction to information theory and applying it to software,
showing that entropy loss leads to failed disruption propagation (FDP) and so to robust software
that is error tolerant. Section 4 shows an example of recent measurements of FDP in hand
written C, where deeper code tends to be more robust. This is followed in Section 5 by
studies of FDP in artificially evolved (genetic programming) code which shows, as expected,
deep nested hierarchies are also robust. The discussion (Sections 6 and 7) suggests FDP is
not only widespread in existing systems but that future AI systems must take it into account
and suggests the adoption of “thin” shallow data rich architectures. The second part of the
discussion (Section 7) considers the creativity of evolving systems and the widespread adoption of
genetic programming, before we conclude in Section 8 that to demonstrate automatic Embodied
Intelligence we need systems that continue to evolve and so recommend architectures that are not
too robust but instead permit continuous change. Therefore we should investigate architectures
composed of shallow code (i.e. the opposite of deeply nested code) which have a large exposed
surface facing a data rich environment.

3. Information Theory and Software
All computer operations are irreversible. Meaning in general given an operation’s output we
cannot infer its inputs. Figure 1 show this graphically. The left hand side of Figure 1 depicts
adding together two 32 bit floating point values to give a single 32 bit output. Because addition
is not reversible, given the output, we cannot infer the inputs. For example, 1.0 + 1.0 = 2.0 and
1.5 + 0.5 = 2.0, so given the output is 2.0 we cannot say what the two inputs were. That is, we
cannot reverse the computation and so information about the inputs has been lost.

We can say how much information there is by calculating the entropy of a distribution
of values. For example, the entropy of the input distribution and the entropy of the output
distribution. The difference between the two says how much information has been destroyed
by the operation. In fact, this can be done not just for a single operation but also for whole
programs. The right hand side of Figure 1 contains two plots. The solid line (red) shows the
distribution of integer values, which are added together to give the output (dashed blue). In the
example, both inputs are digits, i.e., the numbers 0 to 9. Here digits 0 and 1 are more common
than the other eight. (The example comes from C source code used in Section 4.) The graph
assumes each input is independent of the other and so the output is one of the nineteen integers
0 to 18. The dashed blue plot shows their distribution. The information content (entropy)
of either input is 2.88 bits. As they are independent, the information of them together is
2 × 2.88 = 5.76 bits. Note the information content (entropy) of the output is 3.75 bits. So this
(irreversible) addition has lost 5.76 − 3.75 = 2.01 bits of information. Entropy loss is inherent
in irreversible operations. I.e. all computation loses entropy.

In [9] we consider the informational impact of all forms of disruptions to the smooth execution
of software. We treat together all types of disruption, be they coding errors (software bugs),
source code changes introduced by mutation testing [24], subtree swaps made by genetic
programming crossover, transients due to cosmic rays, EM radiation inserted by a hostile
opponent, etc., as long as they change the state of the program during execution. For such
a disruption to be effective, that state change has to propagate from its origin to the program’s
output. If it does not, the program is robust to the error. From an information theory point of
view, information about the disruption has to propagate to the output. In nested hierarchies,
information loss is progressive. So that even partial information lost cannot be recovered. Hence
when information has to pass through many levels of nesting, all information about the disruption
may be lost, giving rise to failed disruption propagation (FDP). But as we have seen, because
digital computation is not-reversible, entropy (i.e. information) loss is inherent in calculation. So
we expect FDP in any deeply nested calculation. In fact, FDP is common even in languages with
side-effect (e.g. global variables in C/C++) that might allow information to by-pass function call
nesting. Thus in non-trivial software small transients tend not to have any knock on consequences
(Figure 2). Leading ordinary software to be robust to many errors [25].

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 4 9 14 18

2.88+2.88 = 5.76
Out: Entropy 3.75

Figure 1. Left: Information Funnel. Computer operators are irreversible. Meaning input
state cannot be inferred from outputs. Information is lost. Right: red 0–9 actual distribution of
0–9 digits in C code (Section 4). Dashed blue 0–18 distribution when they are added. Although
the output of + is wider and has higher entropy (information content, 3.75 bits), it is smoother
and has less entropy than the combined entropy (5.76 bits) of the two inputs to + [8].

4. Failed Disruption Propagation (FDP) in Nested Software
In order to judge the variation in Failed Disruption Propagation (FDP) with depth, we took
some highly nested benchmark C code (i.e. VIPS) and inserted mutations into it at random [8].
We measured how deep the mutation was, and followed Voas’ PIE framework [27] to measure
which mutations were indeed Executed, which did change (Infect) state and then did that state
change Propagate from the mutation’s location to impact the outputs. Figure 4 shows in this
example, random C code changes deeper than 30 levels of function nesting tend to show FDP,
i.e. deeper human written code can be more robust.

VIPS is well established C code which in addition to function’s arguments and return values
makes heavy used of pointers and shared data. This means information flows both through
the nested hierarchy of function calls (like in genetic programming, next section) but also short
circuits the hierarchy by passing information via global data. Nevertheless we do see a weak
relationship between run time nesting depth and degree of failed disruption propagation. If
we exclude mutations which stopped the program immediately, e.g. with a segmentation error,
Figure 4 shows there is indeed some variation between mutations with FDP and those without
and their execution depth.

The PARSEC suite of benchmarks has been used to test parallel super computers for NASA.
It mostly consists of numeric algorithms but also includes some image processing tools, including
VIPS [28, 29]. VIPS is an image processing library of 90 000 lines of C source code. We chose the
vipsthumbnail application as it was known to contain some highly nested code. vipsthumbnail
runs in parallel threads (hence it is non-deterministic). It takes a large image and create a small
image (a thumbnail). By default the output is 128 pixels wide. We used a combination of Linux
perf and GDB [8] to profile vipsthumbnail and select just the parts of the VIPS library which
are heavily used in thumbnail generation (Figure 3). Almost all the unused C code was removed
so it could not be mutated This reduced the total library from 90 000 to 7 328 lines of code
spread over 37 files. We used the genetic improvement tool Magpie1 [30] to select uniformly at
random (independent of their depth) 1000 locations in the active C code to mutate and record
their runtime execution depth and their impact, if any, on the program’s output. The results
are summarised in Table 1.

Table 1 shows the code is robust to most mutations. Only 16.4% of mutations caused a
runtime error. Most of these stopped the program immediately, and there were only 37 where

1 https://github.com/bloa/magpie

Figure 2. Lorenz Butterfly considered harmful. Lorenz [26] viewed the world’s weather as
being chaotic and posed the question “Does the Flap of a Butterfly’s Wings in Brazil Set Off a
Tornado in Texas?” but entropy loss makes software robust not chaotic.

https://github.com/bloa/magpie

Figure 3. Left: 3264×2448 input image. Right: 128×96 thumbnail image generated by VIPS

Table 1. 1000 random Magpie VIPS mutants

Compiled, ran correct output 526 Correct output 438
Mutation is identical to original code 88

Failed to compile 302
Failed to run correctly or gave 164 exception 127
incorrect output output error 37
Magpie TypeError 8

the program terminated as usual but it generated output that was not identical to the unmutated
code. We know these 37 satisfy the PIE frame work. We selected at random 25 of them and
looked for 25 mutants amongst the 438 which changed the code and gave the right output. In
both cases we select mutants which are executed and which do change the program’s internal
state and we measure their execution depth. In most cases the mutants are executed more
than once, typically thousands of times, and at more than one depth. The 25 mutants which
encountered FDP and so gave the right answer (red) and the 25 (of 37) where the mutants
disruption reached the output (blue dashed) are plotted in Figure 4. Notice deep mutations
(y > 30) tend not to impact VIPS thumbnail output.

5. Convergence/Stasis in Genetic Programming (GP)
In a series of experiments we have run genetic programming (GP) on benchmark problems which
show GP populations continue to evolve and find better solutions even when run for up to one
million generations and evolving trees with up to two billion nodes. Due to a series of innovations
[31, 6, 32, 33, 34, 35, 19, 36, 37] in Andy Singleton’s GPquick [38] these experiments can be run
in days or weeks (rather than years or decades needed by Lenski).

 0

 10

 20

 30

 40

 50

 60

 1 5 10 15 19 20 25

D
e
p

th
 o

f
fu

n
c
ti
o

n
 c

a
ll

n
e

s
ti
n
g

VIPS mutations sorted by mean execution depth

FDP no error
Non exception errors

Figure 4. 25 VIPS mutations with no impact (mean depth +) and 25 which change output
(mean depth ×). Error bars show interquartile range. +× also show min and max depth. Notice
mutations with greater average depth tend not to impact VIPS thumbnail output.

These experiments show that GP runs may find thousands of innovations during an extended
run and although fitness improvement continues, it slows (Figure 5). These runs were allowed
to produce enormous trees and the rate of improvement is inversely proportional to the size of
the trees because failed disruption propagation in these strictly hierarchical systems means only
genetic events near the tree’s output make any difference (worse or better).

In tree GP programs are usually drawn as inverted trees (e.g. Figures 6 and 7), with the
output being taken from the root node, at the top of the diagram and the program’s inputs are
fed into it via the tree’s leafs. The leafs are shown towards the bottom of the diagram.

Figure 6 shows failed disruption propagation where the disruption is introduced at runtime
in an integer problem. The shaded nodes indicate the parts of the tree where inserting runtime
disruptions has some impact on the program’s output. FDP means in the bulk of the tree the
disruption has no impact (not shaded). As trees get bigger the sensitive area near the output
shrinks as a fraction of the whole tree.

Figure 7 shows an evolved floating point tree where the disruption is to change the program
and then re-evaluate it on all the test cases. The coloured oval nodes show the difference between
the evaluation in the original tree and the modified tree. The large black oval immediately above
the code disruption shows initially the internal evaluation is disrupted on all test cases. As with
Figure 1, the system is hierarchical and once information about the disruption is lost it is not
recovered higher up the tree. Thus if on a given test case the evaluation between the original
(mother) program and her offspring becomes the same, the evaluation above that point (i.e. closer
to the output) will remain the same. In particular if FDP occurs for a particular test case then
the evaluation of the two programs at the root node will be the same on that test case. So they
have the same output. If FDP occurs somewhere on all test cases, then it will succeed in hiding
the disruption and both programs will have the same output. Typically this means they have
the same fitness scores.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1 10 100 1000 10000 100000

B
e
s
t
fi
tn

e
s
s
 =

 M
e

a
n

 |
e
rr

o
r|

 4
8

 f
ix

e
d
 t

e
s
t

c
a
s
e

s

Generation

3587

 877

3536

1044

5930

 728

2401

3982

1998

 1269

Figure 5. Evolution of mean absolute error in ten GP runs of Sextic polynomial [4] with
population of 500. Runs to 100 000 generations (2 stopped early). Labels give number of
generations when fitness got better [6].

Figure 6. Example evolved solution (size 771) to Fibonacci problem [39]. Coloured shading
shows external impact of disrupting internal runtime evaluation by increasing it by 1 (smallest
possible change). Disruption at red nodes cause 16-20 test cases to fail. Blue 1 test case fails.
As predicted by information theory, failed disruption propagation (FDP) means inserting run
time errors far from the output (top) has little effect. Thus almost the whole program is not
affected on any test case (white).

DIV

ADD SUB

SUB X DIV SUB

MUL X

-0.826 -0.718

DIV MUL SUB MUL

-0.294 -0.621 SUB -0.36

0.026 DIV

0.255 0.997

ADD MUL SUB DIV

0.551 DIV DIV SUB

0.255 0.997 DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB MUL MUL SUB

SUB MUL ADD 0.12

ADD SUB DIV SUB

0.837 X X X DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.769 X X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

0.799 ADD

SUB MUL

1 MUL ADD 0.12

1 MUL -0.621 0.889

1 MUL ADD 0.12

0.255 1 DIV SUB

ADD 1

0.799 -0.273 1 0.12

0.799 1

3 MUL

4 MUL ADD 0.12

4 MUL X 0.889

ADD 4 ADD 0.12

0.255 MUL 4 SUB

ADD 0.12

0.799 -0.273

4 SUB -0.129 DIV

4 SUB MUL SUB

SUB 5 MUL SUB

-0.826 X SUB 37

ADD MUL 37 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

ADD SUB 0.026 DIV

SUB MUL -0.129 X

ADD MUL ADD 0.12

SUB SUB X 0.889

ADD MUL ADD SUB

SUB MUL X 0.889

X MUL DIV 0.12

DIV SUB

DIV SUB 0.026 DIV

ADD SUB SUB X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.474 0.601

0.255 0.997

X X

0.837 X X X

0.799 ADD

SUB SUB

ADD -0.129 ADD SUB

SUB MUL

0.997 MUL DIV 0.12

DIV SUB

DIV SUB X DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.255 0.997

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 0.997

0.837 X X X

0.255 0.997

X 38

38 SUB

38 SUB -0.129 X

0.799 38 SUB SUB

38 MUL

38 0.255 ADD 0.12

SUB 47

ADD MUL 47 0.12

0.255 MUL DIV 0.997

ADD 0.12

0.799 -0.273

DIV SUB

ADD SUB MUL SUB

SUB X X SUB

-0.826 X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

47 ADD

47 SUB SUB SUB

47 MUL ADD SUB

SUB 48 X ADD

ADD SUB 48 0.12

0.551 MUL -0.129 X

SUB -0.826

-0.129 X

X 48

DIV ADD

DIV X SUB MUL

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X MUL DIV 0.12

DIV SUB

DIV SUB 0.026 DIV

ADD SUB SUB X

SUB X MUL SUB

-0.826 X X X -0.129 X

0.474 0.601

0.255 0.997

X X

DIV ADD

DIV -0.769 -0.826 X

0.551 0.601

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X SUB -0.294

0.026 DIV

0.255 0.997

0.889 ADD

SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X X -0.129 SUB

-0.129 X

0.255 ADD

0.799 ADD

SUB X

-0.129 MUL

X 0.889

0.799 ADD

SUB X

-0.129 MUL

X 0.889

0.799 ADD

SUB -0.129

ADD MUL

SUB MUL X 0.889

ADD MUL DIV SUB

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD DIV MUL SUB

SUB X MUL 0.997

-0.826 X X X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

X SUB SUB ADD

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

DIV 0.601 -0.129 X

DIV X

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

0.474 0.601 SUB MUL

-0.129 MUL DIV 0.12

DIV X

DIV SUB

ADD SUB -0.826 SUB

SUB X MUL SUB

-0.826 X X X -0.129 X

SUB SUB

0.474 0.601 -0.129 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 0.997

DIV SUB -0.129 DIV

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X -0.129 SUB

-0.129 X

0.255 0.997

0.799 ADD

SUB SUB

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.273 -0.294

0.799 ADD

SUB SUB

ADD MUL SUB SUB

SUB MUL X 0.889

ADD MUL DIV SUB

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV MUL 0.026 DIV

ADD ADD ADD 0.12

SUB X SUB MUL

-0.826 X SUB MUL ADD 0.12

ADD SUB DIV SUB

0.837 X X X DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X MUL SUB

-0.769 X X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

0.799 ADD

SUB MUL

ADD 0.255 ADD 0.12

SUB MUL

ADD MUL ADD 0.12

0.255 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB -0.129 DIV

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X ADD

ADD SUB DIV 0.12

0.551 MUL -0.129 X

SUB -0.826

-0.129 X

X SUB

DIV SUB

DIV X ADD SUB

ADD SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

DIV ADD

DIV -0.769 -0.826 X

0.551 0.601

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X SUB -0.294

0.026 DIV

0.255 0.997

0.799 ADD

SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X -0.129 X

-0.826 X

0.255 0.997

X SUB

DIV SUB

DIV SUB -0.129 X

ADD SUB MUL SUB

ADD X MUL MUL

0.837 X X X ADD 0.12

ADD ADD

SUB SUB SUB SUB

ADD MUL ADD SUB

SUB MUL X 0.889

ADD MUL DIV 0.12

0.551 MUL DIV SUB

ADD 0.12

0.799 -0.273

DIV SUB 0.026 DIV

ADD SUB -0.129 X

SUB X -0.129 X

-0.826 X

0.255 0.997

X SUB

DIV SUB

DIV SUB -0.129 X

ADD SUB MUL SUB

SUB X MUL SUB

-0.826 X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.129 -0.294

X X SUB SUB

0.474 0.601 -0.129 X

0.837 X X X

-0.129 MUL ADD DIV

X 0.889 0.837 X -0.129 -0.294

0.255 0.997

X SUB SUB ADD

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X 0.601 ADD MUL

SUB MUL DIV 0.12

ADD MUL DIV 0.12

0.551 MUL DIV MUL

ADD 0.12

0.799 -0.273

DIV SUB -0.826 -0.718

ADD DIV -0.129 X

SUB X 0.255 0.997

-0.826 X

X SUB

SUB SUB

MUL SUB -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

X SUB

0.12 SUB

-0.129 X

ADD SUB MUL SUB

0.837 X X X X X SUB SUB

0.474 0.601 -0.129 X

X X SUB SUB

0.474 0.601 -0.129 X

0.255 0.997

MUL SUB ADD -0.621

X X SUB SUB

0.474 0.601 -0.129 X

DIV ADD

DIV -0.769 -0.826 X

0.551 X

Figure 7. Trace of impact of crossover (red) in evolved tree. Replaced and new code are
both evaluated on the test set (48 tests) [33, 40]. The size and number in each node gives the
number of test cases where the evaluation of the parent and child are not identical. Their average
evaluation difference is indicated on a log scale by the node’s colour. Average differences greater
than 0.01 are shown with dark colours, less than 0.01 by brighter colours. Brightest yellow
shows smallest non-zero difference (RMS 3.1 10−10). If, as here, parent and child evaluations
are identical before reaching the root node, the remainder of the evaluation is not needed (gray
nodes) [35].

In Figure 7 the number of test cases where evaluation is different in the original and child
program is given as a number in the coloured nodes. As expected, this falls monotonically as we
move away from the disrupted code towards the root node. Although information theory does
not guarantee this (and counter examples do occur), in our floating point trees the size of the
difference in evaluation tends to fall. Figure 7 shows this using the colour of the shading, with
dark (black or blue) colours indicating large differences and fainter (yellow) showing evaluation
in the two programs are almost identical. If, as in Figure 7, at any point evaluation of the parent
and child programs become identical, evaluation at their root nodes must be identical, and so
their outputs must be identical. Hence evaluation can stop early and we can simply copy the
results from the first program to be the outputs of the new program.

Typically there is considerable variation between different trees in different GP runs,
nevertheless by taking averages across a large number of disruption locations Figure 8 is able to
plot a regression line showing the rapid exponential impact of FDP even when internal evaluation
is totally randomised. With floating point, information loss is slower but still rapid and so we
again see exponential fall off so that deep disruptions are unlikely to have any impact at all.

6. Implications for Future AI
In nested systems information once lost cannot be recovered. In particular as learning adapts
existing programs, information about the adaptation once lost during evaluation of the new
program variant can have no impact of the program’s outputs. That is, there is no learning signal;
externally we cannot tell if the adaptation was good or not. Without feedback, learning becomes
random and so continual improvement requires good information flow from the adaptation sites
to the program’s outputs.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30

F
a

c
ti
o

n
 r

u
n
ti
m

e
 d

is
ru

p
ti
o
n

 t
h

a
t

c
h
a

n
g

e
s
 o

u
tp

u
t

Distance (depth) between location of RANDINT disruption and output

Figure 8. Complete information loss (FDP) becomes almost certain as depth increases when
disrupting a large solution to Fibonacci problem with a random value [39]. Dotted line ≈ 0.4 e−0.3

shows exponential fall in fraction of run time disruptions reaching output. Meaning the chance
of disruption falls by 1

2 as depth increases by 2.3 levels.

In simple functional systems (previous section) we saw rapid and complete information loss.
Similar to AC electrical power flow there is a skin effect: we can make the electrical conductor
as thick as we like but once it is wider than the skin depth, increasing the dimensions of the
conductor makes very little difference to its ability to carry power. So we can make code as
deep as we like, but any change we make will not have impact unless it is near the program’s
outputs. Unless it has external impact, it will be hard to measure if the change was a learning
step in the right direction or not.

In practice in digital computing the “skin depth” can be surprisingly small. In the previous
section, for a simple 32 bit integer experiment it was 2.3 function nesting levels. Of course in
systems we construct we can bias the location of changes to be near the surface, but then we
risk our system growing in complexity and size and so containing large volumes of code which
is out of the reach of future changes. Such systems might eventually carry the burden of huge
fossilised legacy code. Perhaps it was useful in the past but cannot now be maintained.

We suggest instead of having populations of huge trees, which resemble redwood sequoia trees
and are composed almost entirely of inert heartwood, perhaps we should investigate populations
which resemble mangroves (left Figure 10). Such systems might be composed of many evolving
trees, each being small and shallow but they would be embedded in a data rich sea. Each new tide
brings new inputs and moves outputs from one part of the forest to other data processing trees.
Figure 10 suggests other naturally occurring porous systems with a high surface area, which
might inspire development of thin learning systems, where adaptable code is closely linked to a
data rich environment.

Information theory is universal and so unless counter measures are taken we anticipate in
future scaling AI systems will have to take into account how to ensure most changes have some
measurable impact by ensuring there are short or at least low entropy loss routes from the

site of the change to some measurable point. In evolutionary computing terms, these are the
mutation or crossover points and the survival of the individual. If we are to evolve embodied
intelligence [41], as with Biology, we may distinguish between mutations etc. to the design
(analogous to DNA) and how they lead to changes of form (analogous to the organisms body or
phenotype). Again if feedback on the new design is to be available the information chain from
design changes to body/mind changes to measurable impact in the environment cannot lose all
the entropy. In digital devices such as software, we suggest, even in large systems, the route
from genotype (design) change to fitness measurement (phenotype survival) needs to be short.

Large complex systems are not inherently robust but if they are not they cannot be built or
survive. If a large system relies on all of its components working but they are fragile. It will
never be assembled. As it gets bigger the construction team will spend more and more of its
time fixing the components that have just broken, rather than completing construction.

In terms of exactly how we will scale AI the hope remains it can be assembled (or self
assemble) from small shallow structures. We can easily foresee a danger that such composites
themselves lose entropy and so become robust and hence do not easily adapt. Perhaps the fitness
environment (e.g. the sea or atmosphere in Figure 10) will not be sufficient and our evolving
architecture will have to include low entropy loss high fidelity channels (analogous to nerve cells
or optical fibres) embedded in the digital matrix. However, as always, there is a danger that
mandating this means we remain wedded to human designed systems where evolution makes
only short term adaptations rather than facilitating long term progress.

7. Artificial Creativity and Uptake of Evolutionary Artificial Intelligence

The creative power of AI in the form of evolutionary computing has been known for several
decades [42]. For example, Creative Evolutionary Systems [43] contains chapters from computer
generated music to novel fighter jet combat [44, p272–276], whilst Koza et al.’s 2003 book [45]
stresses genetic programming as a routine invention machine. Indeed the annual EvoMusArt
conference has been demonstrating computer creativity in the arts since its inception in 2012.
Similarly game playing has long been an application of AI, e.g. Checkers (draughts) [46, 47].
The creation of learning based machines which surpass the performance of all humans, has
not diminish human interest in games or sports. For example, people still run, even though
they know they will never be the best human runner in the world nor outpace a motorcycle.
Similarly people play chess and other games despite knowing that superhuman AI performance
is readily available. As with art, there are long established conferences and journals dedicated
to evolutionary and other learning based approaches to software based game playing, e.g. the
IEEE Conference on Games, which started (as CIG) in 2005.

A question raised recently [48, 49] was how much is GP used? Of course most industrialists
are not interested in papers. Indeed they may have sound commercial reasons for not publicising
their results or even saying what they are working on. This means numbers based on published
work will always be an underestimate [50]. Nevertheless data sampled from the genetic
programming bibliography for last year (2023) suggests 38±5% of published papers are primarily
on applications which just happen to use GP (Figure 9). Many applications relate to health
(e.g. [51, 52, 53, 54, 55, 56, 57, 58, 59]), civil engineering (e.g. [60, 61, 62, 63, 64, 65, 66, 67, 68])
or solid state materials, e.g. batteries [69, 70, 71, 72, 73].

https://link.springer.com/conference/evomusart
https://gpbib.cs.ucl.ac.uk/

Figure 9. An estimated 38±5% of papers from 2023 in the GP bibliography are on applications

Mangrove a Lungs b [74] Sponge c

Coral d Pumice e Zeolite f [75]
Figure 10. Possible natural sources of inspiration for software architectures suited to prolonged
evolution. They have a large surface area so that their volume lies close to a surface. Such
structures could provide a large space for evolving software whilst keeping most of the code near
to its environment (Wikimedia a b c d e, [75]f)

8. Conclusions
Information theory predicts that code changes will suffer failed disruption propagation FDP,
which makes both deeply nested automatically generated code evolved by genetic
programming (GP) and human written software resistant to change. In GP with an integer
representation the impact of even very large run time disruptions on average halved for each
increase in depth of 2.3 levels.

Therefore we advocate research into porous high surface area shallow code “mangrove”
architectures, where the adapting code is closely connected to a data rich environment. To
ensure that updates continue to have impact, the system must have limited robustness and so
limited code depth. Figure 10 shows a few natural structures with high surface areas, which
might inspire continual adaptation EI architectures.

https://gpbib.cs.ucl.ac.uk
https://commons.wikimedia.org/wiki/File:Bali_Barat_mangroves.jpg
https://commons.wikimedia.org/wiki/File:Lung_structure_normal.jpg
https://commons.wikimedia.org/wiki/File:Euplectella_aspergillum_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Mushroom_Coral_(Fungia)_Top_Macro_91.JPG
https://commons.wikimedia.org/wiki/File:Teidepumice.jpg
https://www.kofo.mpg.de/en/research/heterogeneous-catalysis/schmidt/zeolites-and-related-molecular-sieves
https://commons.wikimedia.org/wiki/File:Bali_Barat_mangroves.jpg
https://commons.wikimedia.org/wiki/File:Lung_structure_normal.jpg
https://commons.wikimedia.org/wiki/File:Euplectella_aspergillum_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Mushroom_Coral_(Fungia)_Top_Macro_91.JPG
https://commons.wikimedia.org/wiki/File:Teidepumice.jpg
https://www.kofo.mpg.de/en/research/heterogeneous-catalysis/schmidt/zeolites-and-related-molecular-sieves

References
[1] Lenski R E et al. 2015 Proceedings of the Royal Society B 282 ISSN 0962-8452 URL http://dx.doi.org/

10.1098/rspb.2015.2292

[2] Good B H et al. 2017 Nature 551 45–50 URL http://dx.doi.org/10.1038/nature24287

[3] Wang R J et al. 2023 Science Advances 9 eabm7047 URL http://dx.doi.org/10.1126/sciadv.abm7047

[4] Koza J R 1992 Genetic Programming: On the Programming of Computers by Means of Natural Selection
(Cambridge, MA, USA: MIT Press) ISBN 0-262-11170-5 URL http://mitpress.mit.edu/books/

genetic-programming

[5] Poli R et al. 2008 A field guide to genetic programming (Published via http://lulu.com and freely
available at http://www.gp-field-guide.org.uk) (With contributions by J. R. Koza) URL http:

//www.gp-field-guide.org.uk

[6] Langdon W B and Banzhaf W 2022 Artificial Life 28 173–204 ISSN 1064-5462 invited submission to Artificial
Life Journal special issue of the ALIFE’19 conference URL http://dx.doi.org/10.1162/artl_a_00360

[7] Langdon W B 2022 Genetic Programming and Evolvable Machines 23 71–104 ISSN 1389-2576 URL
http://dx.doi.org/10.1007/s10710-021-09405-9

[8] Langdon W B and Clark D 2024 13th International Workshop on Genetic Improvement @ICSE 2024 ed An
G et al. (Lisbon: ACM) pp 1–8 best paper URL http://dx.doi.org/10.1145/3643692.3648259

[9] Petke J et al. 2021 ESEC/FSE 2021, Ideas, Visions and Reflections ed Avgeriou P and Zhang D (Athens,
Greece: ACM) pp 1475–1478 URL http://dx.doi.org/10.1145/3468264.3473133

[10] Harman M and Jones B F 2001 Information and Software Technology 43 833–839 ISSN 0950-5849 URL
http://dx.doi.org/10.1016/S0950-5849(01)00189-6

[11] Jahangirova G et al. 2016 Proceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA’16) (Saarbruecken, Germany: ACM) pp 247–258 URL http://dx.doi.org/10.1145/2931037.

2931062

[12] Beyer H G 2001 The Theory of Evolution Strategies Natural Computing Series (Springer) ISBN 3-540-67297-4
[13] Reeves C R and Rowe J E 2003 Genetic Algorithms–Principles and Perspectives: A Guide to GA Theory

(Kluwer Academic Publishers)
[14] Li M and Vitanyi P M B 1992 Journal of Computer and System Sciences 44 343–384
[15] Cilibrasi R et al. 2004 Computer Music Journal 28 49–67 URL http://homepages.cwi.nl/~paulv/papers/

music.pdf

[16] Cilibrasi R and Vitanyi P M B 2005 Automatic meaning discovery using Google v2 URL http://www.arxiv.

org/abs/cs.CL/0412098

[17] Cilibrasi R L and Vitanyi P M B 2007 IEEE Transactions on Knowledge and Data Engineering 19 370–383
ISSN 1041-4347 URL http://dx.doi.org/10.1109/TKDE.2007.48

[18] Langdon W B and Poli R 1997 Soft Computing in Engineering Design and Manufacturing ed Chawdhry
P K et al. (Springer-Verlag London) pp 13–22 ISBN 3-540-76214-0 URL http://dx.doi.org/10.1007/

978-1-4471-0427-8_2

[19] Langdon W B 2022 A trillion genetic programming instructions per second ArXiv URL https://arxiv.org/

abs/2205.03251

[20] Silva S et al. 2012 Genetic Programming and Evolvable Machines 13 197–238 ISSN 1389-2576 URL
http://dx.doi.org/10.1007/s10710-011-9150-5

[21] Poli R and McPhee N F 2013 Theory and Principled Methods for the Design of Metaheuristics Natural
Computing Series ed Borenstein Y and Moraglio A (Springer) pp 181–204 URL http://dx.doi.org/10.

1007/978-3-642-33206-7_9

[22] Card S W 2010 GECCO 2010 ed Card S W and Borenstein Y (Portland, Oregon, USA: ACM) pp 1851–1854
URL http://dx.doi.org/10.1145/1830761.1830815

[23] Hulme D et al. 2024 Solving machine consciousness: Theory and approach Conscium
[24] DeMillo R A et al. 1978 IEEE Computer 11 31–41 URL http://dx.doi.org/10.1109/C-M.1978.218136

[25] Langdon W B and Petke J 2015 Complex Systems Digital Campus E-conference, CS-DC’15 Proceedings in
Complexity ed Parrend P et al. (Springer) pp 203–211 invited talk URL http://dx.doi.org/10.1007/

978-3-319-45901-1_24

[26] Lorenz E N 1993 The Essence of Chaos Jessie and John Danz lectures (Seattle, USA: University of
Washington Press) chap Appendix 1, pp 181–184 URL https://uwapress.uw.edu/book/9780295975146/

the-essence-of-chaos/

[27] Voas J M and Miller K W 1995 IEEE Software 12 17–28 ISSN 0740-7459 URL http://dx.doi.org/10.

1109/52.382180

[28] Martinez K and Cupitt J 2005 Proceedings of the 2005 International Conference on Image Processing, ICIP
(Genoa, Italy: IEEE) pp 574–577 URL http://dx.doi.org/10.1109/ICIP.2005.1530120

[29] Langdon W B and Clark D 2024 EuroGP 2024: Proceedings of the 27th European Conference on Genetic

http://dx.doi.org/10.1098/rspb.2015.2292
http://dx.doi.org/10.1098/rspb.2015.2292
http://dx.doi.org/10.1038/nature24287
http://dx.doi.org/10.1126/sciadv.abm7047
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1162/artl_a_00360
http://dx.doi.org/10.1007/s10710-021-09405-9
http://dx.doi.org/10.1145/3643692.3648259
http://dx.doi.org/10.1145/3468264.3473133
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1145/2931037.2931062
http://dx.doi.org/10.1145/2931037.2931062
http://homepages.cwi.nl/~paulv/papers/music.pdf
http://homepages.cwi.nl/~paulv/papers/music.pdf
http://www.arxiv.org/abs/cs.CL/0412098
http://www.arxiv.org/abs/cs.CL/0412098
http://dx.doi.org/10.1109/TKDE.2007.48
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
https://arxiv.org/abs/2205.03251
https://arxiv.org/abs/2205.03251
http://dx.doi.org/10.1007/s10710-011-9150-5
http://dx.doi.org/10.1007/978-3-642-33206-7_9
http://dx.doi.org/10.1007/978-3-642-33206-7_9
http://dx.doi.org/10.1145/1830761.1830815
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1007/978-3-319-45901-1_24
http://dx.doi.org/10.1007/978-3-319-45901-1_24
https://uwapress.uw.edu/book/9780295975146/the-essence-of-chaos/
https://uwapress.uw.edu/book/9780295975146/the-essence-of-chaos/
http://dx.doi.org/10.1109/52.382180
http://dx.doi.org/10.1109/52.382180
http://dx.doi.org/10.1109/ICIP.2005.1530120

Programming (LNCS vol 14631) ed Giacobini M et al. (Aberystwyth: Springer Verlag) pp 209–226 URL
http://dx.doi.org/10.1007/978-3-031-56957-9_13

[30] Blot A and Petke J 2022 MAGPIE: Machine automated general performance improvement via evolution of
software arXiv 2208.02811 URL http://dx.doi.org/10.48550/arxiv.2208.02811

[31] Langdon W B 2019 GECCO ’19 Companion ed Doerr C (Prague, Czech Republic: ACM) pp 63–64 URL
http://dx.doi.org/10.1145/3319619.3326770

[32] Langdon W B 2020 Multi-threaded memory efficient crossover in C++ for generational genetic programming
ArXiv 2009.10460 URL http://arxiv.org/abs/2009.10460

[33] Langdon W B 2021 EuroGP 2021: Proceedings of the 24th European Conference on Genetic Programming
(LNCS vol 12691) ed Hu T et al. (Virtual Event: Springer Verlag) pp 229–246 URL http://dx.doi.org/

10.1007/978-3-030-72812-0_15

[34] Langdon W B 2021 Proceedings of the Genetic and Evolutionary Computation Conference Companion
GECCO ’21 ed Chicano F et al. (Internet: Association for Computing Machinery) pp 253–254 URL
http://dx.doi.org/10.1145/3449726.3459437

[35] Langdon W B 2021 Genetic Programming Theory and Practice XVIII Genetic and Evolutionary Computation
ed Banzhaf W et al. (East Lansing, MI, USA: Springer) pp 143–164 URL http://dx.doi.org/10.1007/

978-981-16-8113-4_8

[36] Langdon W B 2022 ACM Transactions on Evolutionary Learning and Optimization 2 ISSN 2688-299X URL
http://dx.doi.org/10.1145/3539738

[37] Langdon W B 2022 Complex Systems 31 287–309 ISSN 0891-2513 URL http://dx.doi.org/10.25088/

ComplexSystems.31.3.287

[38] Singleton A 1994 BYTE 171–176 ISSN 0360-5280 URL http://www.assembla.com/wiki/show/andysgp/

GPQuick_Article

[39] Langdon W B 2022 Proceedings of the Genetic and Evolutionary Computation Conference Companion
GECCO ’22 ed Trautmann H et al. (Boston, USA: Association for Computing Machinery) pp 574–577
URL http://dx.doi.org/10.1145/3520304.3528878

[40] Langdon W B et al. 2021 5th Workshop on Landscape-Aware Heuristic Search GECCO 2021 Companion ed
Veerapen N et al. (Internet: ACM) pp 1683–1691 URL http://dx.doi.org/10.1145/3449726.3463147

[41] Hughes J et al. 2022 IOP Conference Series: Materials Science and Engineering 1261 012001 URL
http://dx.doi.org/10.1088/1757-899X/1261/1/012001

[42] Langdon W B 2024 Communications of the ACM 67 8 ISSN 0001-0782 letter to the editor URL http:

//dx.doi.org/10.1145/3654698

[43] Bentley P J and Corne D W 2001 Creative Evolutionary Systems ed Bentley P J and Corne D W (Morgan
Kaufmann) pp 1–75 ISBN 1-55860-673-4 URL http://dx.doi.org/10.1016/B978-155860673-9/50035-5

[44] Smith R E 2019 Rage Inside the Machine–the prejudice of algorithms, and how to stop the internet making
bigots of us all (Bloomsbury business) ISBN 9781472963888

[45] Koza J R et al. 2003 Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer
Academic Publishers) ISBN 1-4020-7446-8 URL http://dx.doi.org/10.1007/0-387-26417-5_1

[46] Samuel A L 1959 IBM Journal 3 210–229
[47] Fogel D B 2001 Blondie24: Playing at the Edge of AI (Morgan Kaufmann) ISBN 1-55860-783-8 URL

https://en.wikipedia.org/wiki/Blondie24

[48] Langdon W B 2023 Genetic Programming and Evolvable Machines 24 Article number: 19 ISSN 1389-2576
special Issue: Thirtieth Anniversary of Genetic Programming: On the Programming of Computers by
Means of Natural Selection URL http://dx.doi.org/10.1007/s10710-023-09467-x

[49] Bartoli A et al. 2023 Genetic Programming and Evolvable Machines 24 Article number: 23 ISSN 1389-2576
special Issue: Thirtieth Anniversary of Genetic Programming: On the Programming of Computers by
Means of Natural Selection URL http://dx.doi.org/10.1007/s10710-023-09471-1

[50] Langdon W B 2023 Genetic Programming and Evolvable Machines 24 Article number: 26 ISSN 1389-2576
special Issue: Thirtieth Anniversary of Genetic Programming: On the Programming of Computers by
Means of Natural Selection URL http://dx.doi.org/10.1007/s10710-023-09474-y

[51] Nguyen S et al. 2023 International Journal of Disaster Risk Reduction 97 104004 ISSN 2212-4209 URL
http://dx.doi.org/10.1016/j.ijdrr.2023.104004

[52] Andelic N and Baressi Segota S 2023 Cancers 15 article no. 3411 ISSN 2072-6694 URL http://dx.doi.org/

10.3390/cancers15133411

[53] Guidetti V et al. 2023 2023 IEEE 10th International Conference on Data Science and Advanced Analytics
(DSAA) URL http://dx.doi.org/10.1109/DSAA60987.2023.10302622

[54] Hurta M et al. 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) pp
3782–3787 ISSN 2156-1133 URL http://dx.doi.org/10.1109/BIBM58861.2023.10385615

[55] Bartlett L K et al. 2023 Proceedings of the 45th Annual Meeting of the Cognitive Science Society ed Goldwater

http://dx.doi.org/10.1007/978-3-031-56957-9_13
http://dx.doi.org/10.48550/arxiv.2208.02811
http://dx.doi.org/10.1145/3319619.3326770
http://arxiv.org/abs/2009.10460
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1007/978-3-030-72812-0_15
http://dx.doi.org/10.1145/3449726.3459437
http://dx.doi.org/10.1007/978-981-16-8113-4_8
http://dx.doi.org/10.1007/978-981-16-8113-4_8
http://dx.doi.org/10.1145/3539738
http://dx.doi.org/10.25088/ComplexSystems.31.3.287
http://dx.doi.org/10.25088/ComplexSystems.31.3.287
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://dx.doi.org/10.1145/3520304.3528878
http://dx.doi.org/10.1145/3449726.3463147
http://dx.doi.org/10.1088/1757-899X/1261/1/012001
http://dx.doi.org/10.1145/3654698
http://dx.doi.org/10.1145/3654698
http://dx.doi.org/10.1016/B978-155860673-9/50035-5
http://dx.doi.org/10.1007/0-387-26417-5_1
https://en.wikipedia.org/wiki/Blondie24
http://dx.doi.org/10.1007/s10710-023-09467-x
http://dx.doi.org/10.1007/s10710-023-09471-1
http://dx.doi.org/10.1007/s10710-023-09474-y
http://dx.doi.org/10.1016/j.ijdrr.2023.104004
http://dx.doi.org/10.3390/cancers15133411
http://dx.doi.org/10.3390/cancers15133411
http://dx.doi.org/10.1109/DSAA60987.2023.10302622
http://dx.doi.org/10.1109/BIBM58861.2023.10385615

M et al. (Sydney, Australia) pp 2833–2839 URL http://hdl.handle.net/2299/27181

[56] Romano J D et al. 2023 Computational Toxicology 25 100261 ISSN 2468-1113 URL http://dx.doi.org/10.

1016/j.comtox.2023.100261

[57] Javed N et al. 2023 AISB 2023 convention proceedings. The Society for the Study of Artificial Intelligence
and Simulation Behaviour ed Mueller B (Swansea, UK) pp 43–50 URL http://eprints.lse.ac.uk/id/

eprint/118805

[58] MacLachlan J et al. 2023 Proceedings of the 2023 Genetic and Evolutionary Computation Conference GECCO
’23 ed Silva S et al. (Lisbon, Portugal: Association for Computing Machinery) pp 1409–1417 silver 2023
HUMIES URL http://dx.doi.org/10.1145/3583131.3590434

[59] Hurta M et al. 2023 2023 26th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS) pp 155–160 ISSN 2473-2117 URL http://dx.doi.org/10.1109/DDECS57882.2023.

10139399

[60] Degefa A B et al. 2023 Sustainability 15 Article No. 15471 ISSN 2071-1050 URL http://dx.doi.org/10.

3390/su152115471

[61] Ozbayrak A et al. 2023 Arabian Journal for Science and Engineering 48 5347–5370 ISSN 2193-567X URL
http://dx.doi.org/10.1007/s13369-022-07445-6

[62] Martin-Alcantara A et al. 2023 Sustainable Energy Technologies and Assessments 56 103053 ISSN 2213-1388
URL http://dx.doi.org/10.1016/j.seta.2023.103053

[63] Yin Z et al. 2023 Ocean Engineering 285 115372 ISSN 0029-8018 URL http://dx.doi.org/10.1016/j.

oceaneng.2023.115372

[64] Ismail M K et al. 2023 Engineering Structures 295 116806 ISSN 0141-0296 URL http://dx.doi.org/10.

1016/j.engstruct.2023.116806

[65] Althoey F et al. 2023 Case Studies in Construction Materials 18 e01774 ISSN 2214-5095 URL http:

//dx.doi.org/10.1016/j.cscm.2022.e01774

[66] Sadat Hosseini A et al. 2023 Ocean Engineering 279 114465 ISSN 0029-8018 URL http://dx.doi.org/10.

1016/j.oceaneng.2023.114465

[67] Al-Aghbari M and M Gujarathi A 2023 Geoenergy Science and Engineering 228 211967 ISSN 2949-8910
URL http://dx.doi.org/10.1016/j.geoen.2023.211967

[68] Xue X et al. 2023 Alexandria Engineering Journal 81 599–619 ISSN 1110-0168 URL http://dx.doi.org/

10.1016/j.aej.2023.09.053

[69] Di Capua G et al. 2023 26th International Conference, EvoApplications 2023 (LNCS vol 13989) ed
Correia J et al. (Brno, Czech Republic: Springer Verlag) pp 461–474 URL http://dx.doi.org/10.1007/

978-3-031-30229-9_30

[70] Di Capua G et al. 2023 2023 IEEE International Symposium on Circuits and Systems (ISCAS) ISSN 2158-
1525 URL http://dx.doi.org/10.1109/ISCAS46773.2023.10181456

[71] Vandana et al. 2023 2023 IEEE 3rd International Conference on Sustainable Energy and Future Electric
Transportation (SEFET) URL http://dx.doi.org/10.1109/SeFeT57834.2023.10244776

[72] Milano F et al. 2023 2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)
pp 35–40 URL http://dx.doi.org/10.1109/MetroAutomotive57488.2023.10219104

[73] Hosseinhashemi S et al. 2023 Journal of Energy Storage 73 109046 ISSN 2352-152X URL http://dx.doi.

org/10.1016/j.est.2023.109046

[74] Langdon W B 2022 Proceedings of 2022 International Conference on Embodied Intelligence, EI-2022 (IOP
Conference Series: Materials Science and Engineering vol 1292) ed Iida F et al. (Internet, Cambridge:
IOP Publishing) p 012021 URL http://dx.doi.org/10.1088/1757-899X/1292/1/012021

[75] Castro M et al. 2016 Chem. Eur. J. 22 15307–15319 URL http://dx.doi.org/10.1002/chem.201600511

http://hdl.handle.net/2299/27181
http://dx.doi.org/10.1016/j.comtox.2023.100261
http://dx.doi.org/10.1016/j.comtox.2023.100261
http://eprints.lse.ac.uk/id/eprint/118805
http://eprints.lse.ac.uk/id/eprint/118805
http://dx.doi.org/10.1145/3583131.3590434
http://dx.doi.org/10.1109/DDECS57882.2023.10139399
http://dx.doi.org/10.1109/DDECS57882.2023.10139399
http://dx.doi.org/10.3390/su152115471
http://dx.doi.org/10.3390/su152115471
http://dx.doi.org/10.1007/s13369-022-07445-6
http://dx.doi.org/10.1016/j.seta.2023.103053
http://dx.doi.org/10.1016/j.oceaneng.2023.115372
http://dx.doi.org/10.1016/j.oceaneng.2023.115372
http://dx.doi.org/10.1016/j.engstruct.2023.116806
http://dx.doi.org/10.1016/j.engstruct.2023.116806
http://dx.doi.org/10.1016/j.cscm.2022.e01774
http://dx.doi.org/10.1016/j.cscm.2022.e01774
http://dx.doi.org/10.1016/j.oceaneng.2023.114465
http://dx.doi.org/10.1016/j.oceaneng.2023.114465
http://dx.doi.org/10.1016/j.geoen.2023.211967
http://dx.doi.org/10.1016/j.aej.2023.09.053
http://dx.doi.org/10.1016/j.aej.2023.09.053
http://dx.doi.org/10.1007/978-3-031-30229-9_30
http://dx.doi.org/10.1007/978-3-031-30229-9_30
http://dx.doi.org/10.1109/ISCAS46773.2023.10181456
http://dx.doi.org/10.1109/SeFeT57834.2023.10244776
http://dx.doi.org/10.1109/MetroAutomotive57488.2023.10219104
http://dx.doi.org/10.1016/j.est.2023.109046
http://dx.doi.org/10.1016/j.est.2023.109046
http://dx.doi.org/10.1088/1757-899X/1292/1/012021
http://dx.doi.org/10.1002/chem.201600511

