
EuroGP-2025. Bing Xue, Luca Manzoni, Illya Bakurov Eds., Trieste. 23-25 April 2025.
Springer. Forthcoming

Population Diversity, Information Theory and
Genetic Improvement

William B. Langdon, David Clark

W.Langdon@cs.ucl.ac.uk david.clark@ucl.ac.uk
CREST, Department of Computer Science,

UCL, Gower Street, London, WC1E 6BT, UK

Abstract. Compression, e.g. gzip, gives algorithmic information theory
(Kolmogorov Complexity) based measures of string population diversity.
To boost it we use the GI tool Magpie and select programs of average
fitness that contribute most to variety, allowing evolution to automati-
cally tailor triangle.c for production speed. We calculate C source code
diversity via approximations to the Normalised Compression Distance
on Multisets (NCDm) using both Cohen and Vitanyi’s O(n2) approach
and our own, O(n) method, finding the cheaper, O(n), is equally good.

Keywords

Evolutionary computing, EC, genetic programming, GP, SBSE, NCD,
Normalised Information Distance, NID, perf, test set diameter

1 Introduction

Diversity plays an important role in optimising finite populations, e.g. in ge-
netic algorithms [1], genetic programming (GP) [2,3] and genetic improvement
GI [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. In software engineering the widely
used application of diversity is to test sets [20][21][22][23][24][25], whilst informa-
tion theory has been applied to software robustness [26] and security [12,27]. The
problem of lack of local gradient, or worse deceptive fitness gradients [28,29] or
even fitness plateaux [30] is well known in optimisation and evolutionary com-
puting. Lack of local gradient appears to be important in population based
genetic improvement, with software engineering benchmarks such as the trian-
gle program (Section 3 [31,32,33]) having search landscapes [34,35] dominated
by large plateaus of equal fitness connected by relatively few improving muta-
tions. Although, using normalised compression distance (NCD), we investigate
the usefulness of program source code variability as a measure to decide which
individuals to discard and which to select for the next generation (Figure 1),
such syntax based population diversity gives mixed results.

Programs are strings but a high quality string diversity measure is a challeng-
ing topic. The Rolls Royce measure of string diversity is Vitanyi’s Normalised
Information Distance [37], which is based on Kolmogorov Complexity. Unfortu-
nately Kolmogorov Complexity is not computable but numerous approximations

1

https://www.evostar.org/2025/eurogp/
http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/D.Clark
http://crest.cs.ucl.ac.uk/

Last generation Current generation

Sort by fitness

2N

Discard triangle.c which gave most compressed population

M = M−1

Create new population
Mutate N/2 Crossover N − N/2

Remove one triangle.c mutant at a time and compress b+M−1 programs

bb

M

Sort lexicographically smallest first

Repeat until fitness selected b + M = N (pop size)

Sorted

Take best and M programs of median fitness

Fig. 1. Incorporating Cohen and Vitani’s Normalised Compression Distance
on Multisets (NCDm) [36] O(n2) into genetic algorithms. The GA population
can contain duplicates (hence multiset rather than set). Each generation the
GA selects from the current and previous generation the best (pink) and those
of the average fitness individuals (hatched) which make the population most
diverse (i.e. hardest to compress).

are available and these offer trade offs between accuracy and efficiency. Com-
monly used is Cilibrasi and Vitanyi’s compression based approximation, the Nor-
malised Compression Distance (NCD) [38,25]. At the other end of the efficiency
scale is the well known but more approximate Levenshtein distance [39,40,41],
also satisfying the metric space axioms, and in the middle is dictionary based
compression which can be efficient and produce a tight upper Kolmogorov Com-
plexity bound for a known, finite population.

We exploit a variant of NCD known as NCDm, or NCD for multi-sets, that
produces a single diversity measure or “diameter” for a multi-set, such as an
EC population [21,36]. In addition, we err on the side of efficacy rather than
efficiency, using Cohen and Vitanyi’s suggested quadratic-in-population-size ap-
proximation for NCDm as well as a linear one of our own invention. When im-
proving the execution speed of the triangle program, we find that these diversity

2

measures are approximately equally useful across our GI runs. Since population
size is a confounding variable for diversity, we study a wide range of population
sizes from one to 1000. However run time increases quadratically and as no fur-
ther fitness improvement was found, we limit our experiments to one run per
scenario for populations sizes 200–1000.

Section 3 says how we use the popular software engineering triangle program
benchmark, whilst Section 4 describes our hybrid genetic programming and GI
Magpie system, particularly how it incorporates information based diversity into
selection. The experiments (Section 5) and results (Section 6) are followed by a
discussion of a 17% improved triangle program (Section 7) and our conclusions
(Section 8). But first the next section briefly describes Cohen and Vitanyi’s
diversity measure NCDm [36], how Feldt et al. [21] use it to measure test suite
diversity and then how we have used their approach within genetic improvement
to actively select breeding populations of evolving program source code.

2 Information Theory applied to Genetic Algorithms

The topic of information theory in genetic algorithms (GAs) and evolutionary
computing, e.g. genetic programming [42] and genetic improvement (GI) [43], is
vast. We will concentrate upon how we have applied it in population selection
in our GI and only note that the approach could be widely used in population
based evolutionary computing.

In genetic algorithms the importance of striking the right balance between
exploring to find new good regions of the search space and exploiting the good
parts already found has long been known [1]. We present (Figure 1) an informa-
tion theoretic way of combining fitness based selection and population diversity
based on Andrew Cohen and Paul Vitanyi’s [36] diversity measure for multi-
sets. Their Normalized Compression Distance (NCD) based multiset distance
(NCDm) is very general and has been applied to test set selection [21].

Cohen and Vitanyi’s underlying approach is to define the information con-
tent of a multiset (which in our case is the population) as using Kolmogorov
complexity. The Kolmogorov complexity of a string is the size of the smallest
program that can generate the string. However Kolmogorov complexity is not
in general computable and so they take their usual NCD approach and approx-
imate it as the length of the compressed string. (Here we will use the size in
bytes of the output generated by gzip.) As part of calculating the normalised
distance for a collection of strings (technically a multiset, as the collection may
contain duplicates) they wish to find the minimum compressed size with all pos-
sible orderings and to normalise by dividing by the largest compressed size of the
multiset excluding all possible subsets. Since there an exponentially large num-
ber of orderings they define an approximation which is still a metric but whose
computational complexity is only quadratic in the number of strings O(n2).

We start with their quadratic algorithm, as used by Robert Feldt et al. [21]’s
universal algorithm for measuring the diversity of test suites (“test set diameter”).
Our NCD based approach is feasible even for populations of 1000, but as expected

3

it is slow. Therefore we introduce a further, linear time O(n) approximation,
which can be orders of magnitude faster (Section 6.6) and as effective.

2.1 Normalized compression distance (NCD) for Multisets (NCDm)

As there an exponentially large number of orderings, to approximate the smallest
compression distance over all possible orderings Cohen and Vitanyi [36] consider
only a quadratic number of orderings. To select which ordering, their basic ap-
proach is to order the multiset and then concatenate it into a single file which
can be compressed (Figure 1). They order the strings (here members of the pop-
ulation) first by size and then alphabetically. By placing similar strings next to
each other, there is a good chance the compression algorithm will perform well
and give a small compressed output file. They then in order omit one member of
the multiset and compress the new (now shorter) concatenated file. They work
through the whole multiset one at a time, to find which string contributed least
and discard it. This gives a multiset which is one member smaller. They repeat,
again removing the string which has least impact on the compression of the
new (smaller) multiset, until only 2 strings are left in the multiset. (Notice the
algorithm is described as sequential but parts could be run parallel.) We first
follow Feldt et al. [21] and in the next section describe how we use this central
part of Cohen and Vitanyi’s [36] algorithm as part of parent selection in the
evolutionary algorithm.

2.2 Information Based Parent Selection

To incorporate Feldt et al. [21]’s test case selection algorithm into a fitness based
evolutionary algorithm with population size N, we start with the current and
previous population (both of size N, total size 2N). From these 2N we select
N to be parents of the next generation. These are sorted by fitness (cf. rank
based selection [1,44]). Those better than average (median) fitness are automat-
ically selected. Those of worse than median fitness are automatically discarded.
We then apply information theory to chose those individuals of average fitness
which will contribute most to the breeding population of parents for the next
generation. (The number of programs of average fitness is quite variable, but in
these experiments it is typically near 10% of the combined population size.) Like
Feldt et al. [21] we apply Cohen and Vitanyi’s [36] NCDm to the source code of
the programs of average fitness but we do not calculate the distance, we merely
run the NCDm algorithm (Figure 1) until we have reduced the number of files
(here C programs) until it plus the number of better than average fitness mem-
bers of the combined populations is equal to N, the size of the next population.
This becomes our breeding population.

This is not in itself an elitist approach. We can choose to make it elitist
by passing one or more members of our breeding population unchanged to the
next generation. But we choose to create half the children using mutation and
the remainder by crossover. The approach could be readily applied to many
evolutionary algorithms which use separate populations.

4

3 Genetic Improvement triangle.c Benchmark

The software engineering triangle benchmark takes three inputs and returns
one of four integer values representing the type of the triangle: scalene, isosceles,
equilateral or not a triangle. (Versions of the triangle program seem to go back to
1976 and Fortran [45]. We use our C version1 and test suite2 [46].) The important
function is 40 lines of C source code (1300 bytes) containing 16 comparisons and
8 return statements. The benchmark’s test suite is designed to cover all branches.
It spends much of its time checking for errors (“not a triangle”, 9 of the 14 tests).
In the source code most of these error checks are at the start of the code, with
another right at the very end.

In our genetic improvement experiment we suppose that the developers of
a real system have taken such a heavy error detection approach and later the
customer wants the code to be faster for everyday use. That is, in the triangles
example, we assume most of the time the code would be presented with three
numbers which are indeed the 3 lengths of the side of a triangle. So in our
experiment we start with the original code and tests but now weight the tests
so important ones score more in the fitness function (see Table 1).

The fitness test harness uses the Linux perf utility’s API to measure how
many computer instructions the mutated code takes on each of the 14 tests
and multiplies it by the weighting for that test. The mutant’s fitness is the 14
added together (Table 1). Note we minimise fitness scores. If the mutant gives
the wrong answer on any test or there is a run time error, its fitness is so poor
it will never be selected to be a parent.

Mutations and crossovers are able to re-arrange the existing C code to get
better scores by moving code that deals with lower weighted cases to further
from the start, allowing important cases to be dealt with more quickly.

Even in a time sharing network desktop, Linux perf’s instruction count
proved very stable and gave reliable fitness measurements. In contrast mea-
surements of elapsed time taken during fitness testing are very noisy [47,48,49].

4 Genetic Programming based on Magpie

Our genetic programming systems is based on Magpie [50]3. Magpie is a language
independent genetic improvement system written in Python. It has many op-
tions. We use only its XML mode. Using srcml (version 1.0.0) we convert the mu-
table source code into a single triangle.c.xml file. To avoid changes to Magpie, the
population selection (Section 2.2 and Figure 1) are done externally. Magpie and
GP parameters are given in Table 1. Our GP makes use of Magpie in three ways:

1. Magpie was run with triangle.c.xml to generate a pool of all 2535 possible
different XML mutations.

1
https://github.com/wblangdon/triangle/blob/master/jss/triangle.c

2
https://github.com/wblangdon/triangle/blob/master/jss/testcases_oracle.txt

3 https://github.com/bloa/magpie downloaded 2 October 2023.

5

https://github.com/wblangdon/triangle/blob/master/jss/triangle.c
https://github.com/wblangdon/triangle/blob/master/jss/testcases_oracle.txt
https://github.com/bloa/magpie

2. To create the initial GP population Magpie is run many times to create one
random mutant at a time. We reject mutants which do not compile, give
runtime errors or fail one or more fitness test. We keep doing this until we
have enough credible mutants to fill the initial population (mutant triangle.c
mean size 1320.1 ± 41.8 bytes).

3. As our GP is running, Magpie facilities are used to compile, run, test and
calculate fitness of each mutant.

4.1 GP Operations: Mutation and Two Point Crossover

The basic Magpie representation is like linear genetic programming [51,52] and
consists of a text based list of genes. Therefore it is easy to extract and insert
individual genes from and into Magpie genomes.

Mutation: a parent, selected uniformly at random from the breeding popu-
lation, is copied and the copy mutated by selecting uniformly at random one
gene within it and replacing it with one taken at random from the 2535 possible
different XML mutations (see item 1 in previous section).

With crossover: two parents are chosen uniformly at random from the breed-
ing population. The first is copied. Two random cut points are chosen uniformly
in the copy and in the second parent. The middle part (i.e. between the cut
points) of the copy is replaced by genes copied from the middle of the second
parent [53, Fig. 2].

Note mutation does not change the number of genes whereas crossover can
but on average neither changes the genome’s length.

5 Experiments

The GP/Magpie system was run 10 times on populations of 1, 2, 5, 20, 50, 100.
Also there were a few runs of 200, 500 and 1000. For each we tried three types
of selection (Figure 1 Section 2.2): based on Feldt et al.’s NCDm O(n2) [21],
our linear O(n) approximation to NCDm and finally breaking ties of average
fitness at random. The GP representation, fitness and parameters are given in
Table 1. The fastest triangle.c mutant on test cases may be found any time up
to generation 100.

6 Results

6.1 Speedup

Figure 2 shows the performance of the best in run for all ten repeated runs. As
expected there is variation between runs but typically the population needs to
contain at least 20 mutated programs for the search to do well. Indeed, although
we did a few runs with larger populations (200, 500 and 1000) there seems to
be no advantage in increasing it above 100. There is little difference between
the three selection algorithms (plotted with +, × or 2). Note the new linear

6

Table 1. Faster triangle.c

Representation: C code converted to XML by srcml. Variable length linear sequence of
XML mutations. Mutated XML converted to C code and compiled.

Fitness cases: 14 test cases, each 3 sides of triangle and expected classification. Test
suite designed to cover original C code.
Test suite weighting to favour important outputs: scalene and equilat-
eral (one test each) weight 81, isosceles (three tests) weight 27, not a
triangle (nine tests) weight 1, (Section 3).

Selection: Fitness is the sum of the number of instructions taken by each test
multiplied by its weighting

fitness =
∑14

i=1
X86 instructions for test i× weight i

If mutant fails to compile, fails at run time, exceeds 2 second time out
or gives wrong answer on any test its fitness is so bad it will never have
children.

1st fitness based rank selection and 2nd contribution to population
diversity, see Figure 1 and Section 2.2.

Population: Panmictic, non-elitist, generational, size 1, 2, 5, 10 · · · 1000.
initial pop Every triangle.c is mutated exactly once. All compile and run (page 6

item 2.). Initial fitness 7929–12578 (most as unmutated code 9069).
Parameters
Magpie: Python version 3.10.1, GGC version 10.2.1, compiler options -O3

-DNDEBUG. Magpie defaults except [search] warmup=1. XML edits:
StmtReplacement StmtInsertion StmtDeletion ComparisonOperator-
Setting ArithmeticOperatorSetting NumericSetting RelativeNumeric-
Setting StmtMoving

GP : 50% subtree XML crossover, 50% subtree XML mutation (Section 4.1).
100 generations. No size limit.

approximation × to estimating population diversity does as well as the quadratic
approach inspired by Feldt et al.’s Test Set Diameter O(n2) [21] + and it is
considerably faster (Section 6.6). Except for some runs with a population of only
one or two, all runs make progress. If we concentrate on runs with a population
of 20 or more, the median speed up is 16%.

6.2 Evolution of Performance

The performance of the three types of selection with various population sizes
are summarised in Figures 2 and 3. Figure 3 plots the evolution of the fastest
(weighted) triangle.c program in the population at each generation for a typical
run at each population size. Typically each run does not converge and the pop-
ulations contain a range of fitness values. As expected performance depends on
population size, with larger populations doing better. Runs with a population
containing a single program (which will have been created by crossover) typically
make no progress (shown by a horizontal line at the top of Figure 3).

In the absence of elitism (Section 2.2 above), even though the best in the
population is guaranteed to be part of the breeding population, they have no
guarantee that they will be selected from it for either way of making genetic

7

 7200

 7400

 7600

 7800

 8000

 8200

 8400

 8600

 8800

 9000

11170

 1 2 5 10 20 50 100 200 500 1000

 20
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

W
e

ig
h
te

d
 i
n
s
tr

u
c
ti
o
n

s
 b

y
 f
a

s
te

s
t

p
ro

g
ra

m
 i
n
 r

u
n

P
e

rc
e

n
t

re
d

u
c
ti
o

n

Population

Fitness only
O(n**2)
Linear

Fig. 2. Fastest triangle.c mutant found in ten runs by generation 100 with
pop size 1, 2, 5, · · · up to 1000 (only 1 run 200–1000). Select best from current
and previous generations to be parents. (One linear × run with population 1 got
stuck at fitness 11 170.) Small horizontal noise added to spread data. Section 6.1.

changes. And even if selected, their children will be either mutated or created by
crossover. Either of which may give a child with worse (or indeed better) fitness.
Thus although a downward trend can be seen in Figure 3, fitness does not usually
improve monotonically. Indeed, since we are hoping for diverse populations we
should not be disappointed that evolution does not lock into the “best seen so
far” fitness value.

6.3 Evolution of Population Diversity

Figure 4 shows the average evolution of information contents of the population
in ten runs with a population of 100 for the three selection schemes and Figure 5
presents a summary by selection scheme and population size (note log scales).

Typically only about 10% of the population have average fitness (where in-
formation content is used to break ties, Section 2.2). Suggesting, in contrast to
typical tournament selection [3, Sect. 2.3], selecting the best of the current and
previous generations with 100% (50% crossover + 50% mutation) genetic modi-
fication avoids too high a selection pressure and does not drive the population to
converge on a single fitness value [54] and instead our GP retains diverse fitness.

As with Figure 2, Figure 5 presents a summary of all the runs for each
selection type and population size. As typically the population’s information
content does not tend to rise to a maximum at the end of the run but often falls

8

9

 7200

 7400

 7600

 7800

 8000

 8200

 8400

 8600

 8800

 9000

 9200

 0 20 40 60 80 100

W
e
ig

h
te

d
 i
n
s
tr

u
c
ti
o
n

s
 u

s
e
d

 b
y
 f
a
s
te

s
t

p
ro

g
ra

m
 i
n
 p

o
p

Generation

 pop 1000
 pop 500

 pop 200

 pop 100

 pop 50
 pop 20

 pop 10

 pop 5

 pop 2 pop 1

Best in pop 1000 O(n)

Fig. 3. Evolution of best fitness in typical run using linear O(n) complexity se-
lection. GI populations from 1 to 1000. Runs with O(n2) and without complexity
selection are similar. (Same run colours as Figure 2.) See Section 6.2.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100

P
o
p
u
la

ti
o
n
 D

ia
m

e
te

r
(b

y
te

s
)

Generation

without inf sel pop 100
O(n**2) pop 100

O(n) pop 100

Fig. 4. Evolution of median population diameter for ten runs with the three
selection schemes. GI populations of 100. The error bars give the interquartile
spread across ten runs. Note change in colour scheme.

 1000

 10000

 100000

 1 2 5 10 20 50 100 200 500 1000

G
e
o

m
e
tr

ic
 m

e
a

n
 P

o
p
u

la
ti
o

n
 D

ia
m

e
te

r
(b

y
te

s
)

Population

Fitness only
O(n**2)
Linear

Fig. 5. Average compressed population of triangle.c mutants (see Section 6.3)
in ten runs up to generation 100 with populations 1, 2, 5, · · · up to 1000 (only
1 run 200–1000). Small horizontal noise added to spread data.

towards the end, Figure 5 gives the average information content across each run.
As expected, Figure 5 shows the higher performing larger populations contain
more information than the smaller populations of triangle.c mutants. Whilst,
in terms of population information content, our linear O(n) × approximation
behaves as Cohen and Vitani’s O(n2) NCDm [36] +. Although the fitness only
approach 2 gives on average less compressible populations (p = 4 10−17 two-
sided non-parametric Mann-Whitney U test), across the 73 runs of each type
the median difference is only 13%.

The size of the triangle.c mutants (phenotype) is determined by the muta-
tions applied (genotype). On average both information based selection schemes
increase the C source code by about 10% (to 1430 bytes) while with fitness only
selection there is more bloat (24%, 1617 bytes). gzip is very good at compressing
the populations. For example with populations 1, 2, 5 and 10, it compresses the
whole population into less than half the space of the original program. Even with
the larger populations (e.g. 100) gzip gives average compression ratios of 46–74.

6.4 Evolution of Genome Size

To illustrate the evolution of the number of genes, Figure 6 shows the growth of
the average genome size for ten runs with a population of 100 triangle.c programs.
It plots 10 runs with O(n2) (solid lines), 10 runs with our linear information based
selection (dashed lines) and 10 runs with fitness only selection, where fitness ties

10

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

M
e
d

ia
n
 n

o
.
g

e
n

e
s

Generation

O(n**2) pop 100
O(n) pop 100

without inf sel pop 100

Fig. 6. Evolution of genome size for ten runs with the three selection schemes.
GI populations of 100. (Same colour scheme as Figure 4.)

are broken randomly (dotted lines), showing the median number of genes rising
from 1 initially to 17 ± 14 in generation 100. (The instances of triangle.c similarly
grow from 1320 on average to 2000 ± 400 bytes by generation 100.)

Although there are fluctuations between generations, an upward trend, known
as bloat [55], can be seen. Therefore Figure 7 gives genome statistics for the end
of each run with each of the population sizes and each of the three selection
schemes. Figure 7 shows there is considerable variation between independent
runs (note log scales). However there is a trend for larger populations (which
tend to contain fitter programs) to contain more genes (i.e. more Magpie muta-
tions of triangle.c, see also Figure 8). In runs with the same population size, all
three approaches (+ × 2) tend to have on average a similar number of mutations.

6.5 Size of Best Solutions

Figure 8 shows all the best in run mutant’s performance (y-axis) and their num-
ber of mutations (x-axis). Figure 8 shows a clear trend for faster (weighted)
programs to have had more changes. However a few mutated triangle.c with
only one, two or three changes do very well. The three selection schemes do
approximately as well as each other.

6.6 Time to do Selection

With fitness only selection and our linear O(n) approximation, selection typi-
cally takes < 1 second per generation on an otherwise unladen multi-core 32GB

11

12

 1

 10

 100

 1 2 5 10 20 50 100 200 500 1000

M
e
d

ia
n
 n

o
.
g

e
n

e
s
 i
n

 l
a
s
t

b
re

e
d

in
g

 p
o

p
u

la
ti
o
n

Population

Fitness only
O(n**2)
Linear

Fig. 7. Average number of genes in ten runs at generation 100 showing little
difference in the 3 selection schemes. Small horizontal noise added to spread data
(same run colours as Figure 2). See Section 6.4.

 7200

 7400

 7600

 7800

 8000

 8200

 8400

 8600

 8800

 9000

 9200

 1 10 100

 20

 19

 18

 17

 16

 15

 14

 13

 12

 11

 10

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0

W
e
ig

h
te

d
 i
n
s
tr

u
c
ti
o
n
s
 b

y
 f
a
s
te

s
t
p

ro
g

ra
m

 i
n

 r
u
n

P
e
rc

e
n
t
re

d
u

c
ti
o
n

Size best mutant of run

Fitness only
O(n**2)
Linear

Fig. 8. Mutant gnome size v. fitness. Size and fitness of fastest triangle.c mutant
found by generation 100 with populations 1, 2, 5, · · · up to 1000. Small horizontal
noise added to spread data (same run colours as Figure 2). See Section 6.5.

Fig. 9. Example Magpie changes to triangle.c which reduces its (weighted)
instruction count from 9069 to 7544 (17% improvement). Pink code removed,
green inserted. (Initially 1300 bytes, mutant 1438 bytes.) See Section 7.

3.6 GHz Intel i7-4790 desktop. Naturally the O(n2) algorithm [36] scales badly
with population size and in the worst case the time to select the parents with
the largest population (1000) reaches almost two hours.

7 Discussion: Example Small High Fitness Mutant

Figure 9 shows a high scoring Magpie mutation as a C source code patch. The
example is from run 6 with a population of 50 using O(n2) selection (we have
deliberately chosen a small example to make explaining it easier). The mutated
triangle.c is now larger (and so more difficult to compress). It was discovered
in generation 15. As the run continued, evolution found similar mutations with
identical scores containing the same genes (some repeated) plus others giving a
still larger C source code. The Magpie genome for this mutation contains two

13

genes StmtInsertion | StmtMoving. Both StmtInsertion and StmtMoving

mutations have two components: the XML stmt level code to be inserted or
moved and the XML location where it is to be placed.

StmtMoving is perhaps the easiest to explain, it moves the compound if

(XML stmt 1, C sources lines 17–19, shown with pink shading in Figure 9) and
inserts it at XML inter block 19 (before line 30 in triangle.c, central green
shading in Figure 9). This means two of the three highly weighted tests for
isosceles (return 2) and the even higher weight scalene (return 1) (see Table 1)
do not incur the cost of checking for non-positive lengths, which correspond to
not a valid triangle (return 4). However it also means risking missing some error
conditions, which are not in the test suite.

The first mutation StmtInsertion copies another compound if from XML
stmt 11 (lines 34–36 of triangle.c) and inserts it at XML inter block 30 (before
line 48 in triangle.c, last green shaded region in Figure 9). In the benchmark’s
test suite there are three tests with invalid zeros as input, notice that the now du-
plicated compound if detects them all. Thus, if because the initial tests for zero
side length have been removed, execution reaches line 48, the duplicated code
will still correctly detect the bad inputs and return 4. So the mutated compiled
(with -O3) code gets a higher score by classifying important test cases earlier.

Notice how Magpie’s operation on XML, effectively at the compiler AST
level, means the mutations can easily operate with compound statements cover-
ing multiple lines and (except in a few odd ball cases) the mutant remains valid
C code. (Even the indentation is correct.)

8 Conclusion

We have demonstrated how evolutionary algorithms can use information theory
based population diversity alongside fitness selection. In the case of genetic im-
provement we used program source code, whereas Genetic Programming might
use trees or instructions and Genetic Algorithms would use bit strings. Being
compression based Cohen and Vitanyi’s Normalised Information Distance (NID)
in its single measure for a multiset (population) form (NCDm) would work with
GP and GAs as well. We also invented a much faster linear version of Cohen
and Vitanyi’s quadratic approximation.

Apart from Pareto multi-objective combinations of our information and tra-
ditional fitness measures or systematically investigating more and weaker ap-
proximations to NID and NCDm in the hopes of a Goldilocks trade off, perhaps
the next thing to consider is other ways to exploit this diversity measure. Popu-
lation size is a confounding random variable for diversity so rather than theory
that predicts convergence to optimal on the basis of population size [56] we could
predict convergence on the basis of NCDm diversity diameter.

Acknowledgements

I am grateful for the assistance of Aymeric Blot, Dan Hoffman and Dan Black-
well.

Example C code in https://github.com/wblangdon/linux_perf_api etc.

14

https://github.com/wblangdon/linux_perf_api

References

1. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley (1989)

2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA (1992), https://mitpress.
mit.edu/9780262527910/genetic-programming/

3. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic pro-
gramming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008), http://www.gp-field-guide.

org.uk, (With contributions by J. R. Koza)

4. Langdon, W.B.: Genetic improvement of programs. In: Matousek, R. (ed.) 18th
International Conference on Soft Computing, MENDEL 2012. Brno University of
Technology, Brno, Czech Republic (27-29 Jun 2012), http://www.cs.ucl.ac.uk/
staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf, invited keynote

5. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1), 118–135 (Feb 2015),
http://dx.doi.org/10.1109/TEVC.2013.2281544

6. Petke, J., Langdon, W.B., Harman, M.: Applying genetic improvement to Mini-
SAT. In: Ruhe, G., Yuanyuan Zhang (eds.) Symposium on Search-Based Software
Engineering. Lecture Notes in Computer Science, vol. 8084, pp. 257–262. Springer,
Leningrad (Aug 24-26 2013), http://dx.doi.org/10.1007/978-3-642-39742-4_
21, short Papers

7. Petke, J., et al.: Genetic improvement of software: a comprehensive survey. IEEE
Transactions on Evolutionary Computation 22(3), 415–432 (Jun 2018), http://
dx.doi.org/doi:10.1109/TEVC.2017.2693219

8. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In:
Nicolau, M., et al. (eds.) 17th European Conference on Genetic Programming.
LNCS, vol. 8599, pp. 87–99. Springer, Granada, Spain (23-25 Apr 2014), http:
//dx.doi.org/10.1007/978-3-662-44303-3_8

9. Langdon, W.B., et al.: Genetic improvement of GPU software. Genetic Program-
ming and Evolvable Machines 18(1), 5–44 (Mar 2017), http://dx.doi.org/10.

1007/s10710-016-9273-9

10. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Specialising software for
different downstream applications using genetic improvement and code transplan-
tation. IEEE Transactions on Software Engineering 44(6), 574–594 (Jun 2018),
http://dx.doi.org/10.1109/TSE.2017.2702606

11. Blot, A., Petke, J.: Empirical comparison of search heuristics for genetic improve-
ment of software. IEEE Transactions on Evolutionary Computation 25(5), 1001–
1011 (Oct 2021), http://dx.doi.org/10.1109/TEVC.2021.3070271

12. Mesecan, I., et al.: HyperGI: Automated detection and repair of information flow
leakage. In: Khalajzadeh, H., Schneider, J.G. (eds.) The 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering, New Ideas and Emerg-
ing Results track, ASE NIER 2021. pp. 1358–1362. Melbourne (15-19 Nov 2021),
http://dx.doi.org/10.1109/ASE51524.2021.9678758

13. Brownlee, A.E.I., et al.: Enhancing genetic improvement mutations using large
language models. In: Arcaini, P., Tao Yue, Fredericks, E. (eds.) SSBSE 2023: Chal-
lenge Track. LNCS, vol. 14415, pp. 153–159. Springer, San Francisco, USA (8 Dec
2023), http://dx.doi.org/10.1007/978-3-031-48796-5_13

15

https://mitpress.mit.edu/9780262527910/genetic-programming/
https://mitpress.mit.edu/9780262527910/genetic-programming/
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/Langdon_2012_mendel.pdf
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1007/978-3-642-39742-4_21
http://dx.doi.org/10.1007/978-3-642-39742-4_21
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1109/TSE.2017.2702606
http://dx.doi.org/10.1109/TEVC.2021.3070271
http://dx.doi.org/10.1109/ASE51524.2021.9678758
http://dx.doi.org/10.1007/978-3-031-48796-5_13

14. Pinna, G., et al.: Enhancing large language models-based code generation by lever-
aging genetic improvement. In: Giacobini, M., Bing Xue, Manzoni, L. (eds.) Eu-
roGP 2024: Proceedings of the 27th European Conference on Genetic Program-
ming. LNCS, vol. 14631, pp. 108–124. Springer, Aberystwyth (3-5 Apr 2024),
http://dx.doi.org/10.1007/978-3-031-56957-9_7

15. Nemeth, Z., Faulkner Rainford, P., Porter, B.: Phenotypic species definitions for
genetic improvement of source code. In: Faina, A., et al. (eds.) ALIFE 2024:
Proceedings of the 2024 Artificial Life Conference. pp. 530–539. The Interna-
tional Society for Artificial Life, MIT Press, Copenhagen (Jul 22-26 2024), http:
//dx.doi.org/10.1162/isal_a_00795

16. Guizzo, G., et al.: Speeding up genetic improvement via regression test selection.
ACM Transactions on Software Engineering and Methodology 33(8) (Nov 2024),
http://dx.doi.org/10.1145/3680466

17. Brownlee, A.E.I., et al.: Large language model based mutations in genetic improve-
ment. Automated Software Engineering 15, article number 15 (2025), http://

dx.doi.org/10.1007/s10515-024-00473-6, special Issue on Advances in Search-
Based Software

18. Blot, A., Petke, J.: A comprehensive survey of benchmarks for improvement of
software’s non-functional properties. ACM Computing Surveys (2025), https://
discovery.ucl.ac.uk/id/eprint/10203326/1/main.pdf, in press

19. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology 43(14), 833–839 (Dec 2001), http://dx.doi.org/10.1016/
S0950-5849(01)00189-6

20. Clark, D., Feldt, R., Poulding, S.M., Shin Yoo: Information transformation: An un-
derpinning theory for software engineering. In: Bertolino, A., Canfora, G., Elbaum,
S.G. (eds.) 37th IEEE/ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 2. pp. 599–602. IEEE Com-
puter Society (2015), http://dx.doi.org/10.1109/ICSE.2015.202

21. Feldt, R., Poulding, S.M., Clark, D., Shin Yoo: Test set diameter: Quantifying
the diversity of sets of test cases. In: IEEE International Conference on Software
Testing, Verification and Validation, ICST. pp. 223–233. Chicago, USA (April 11-
15 2016), http://dx.doi.org/10.1109/ICST.2016.33

22. Tsong Yueh Chen, Fei-Ching Kuo, Merkel, R.G., Tse, T.H.: Adaptive random
testing: The ART of test case diversity. Journal of Systems and Software 83(1),
60–66 (Jan 2010), http://dx.doi.org/10.1016/J.JSS.2009.02.022

23. Arcuri, A., Briand, L.C.: Adaptive random testing: an illusion of effectiveness? In:
Dwyer, M.B., Tip, F. (eds.) Proceedings of the 20th International Symposium on
Software Testing and Analysis, ISSTA 2011. pp. 265–275. ACM, Toronto, Canada
(July 17-21 2011), http://dx.doi.org/10.1145/2001420.2001452

24. Anand, S., et al.: An orchestrated survey of methodologies for automated software
test case generation. Journal of Systems and Software 86(8), 1978–2001 (August
2013), http://dx.doi.org/10.1016/j.jss.2013.02.061

25. Elgendy, I.T., Hierons, R.M., McMinn, P.: Evaluating string distance metrics
for reducing automatically generated test suites. In: Lonetti, F., et al. (eds.)
Proceedings of the 5th ACM/IEEE International Conference on Automation of
Software Test (AST 2024). pp. 171–181. Lisbon, Portugal (April 15-16 2024),
http://dx.doi.org/10.1145/3644032.3644455

26. Petke, J., Clark, D., Langdon, W.B.: Software robustness: A survey, a theory, and
some prospects. In: Avgeriou, P., Dongmei Zhang (eds.) ESEC/FSE 2021, Ideas,
Visions and Reflections. pp. 1475–1478. ACM, Athens, Greece (23-28 Aug 2021),
http://dx.doi.org/10.1145/3468264.3473133

16

http://dx.doi.org/10.1007/978-3-031-56957-9_7
http://dx.doi.org/10.1162/isal_a_00795
http://dx.doi.org/10.1162/isal_a_00795
http://dx.doi.org/10.1145/3680466
http://dx.doi.org/10.1007/s10515-024-00473-6
http://dx.doi.org/10.1007/s10515-024-00473-6
https://discovery.ucl.ac.uk/id/eprint/10203326/1/main.pdf
https://discovery.ucl.ac.uk/id/eprint/10203326/1/main.pdf
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1109/ICSE.2015.202
http://dx.doi.org/10.1109/ICST.2016.33
http://dx.doi.org/10.1016/J.JSS.2009.02.022
http://dx.doi.org/10.1145/2001420.2001452
http://dx.doi.org/10.1016/j.jss.2013.02.061
http://dx.doi.org/10.1145/3644032.3644455
http://dx.doi.org/10.1145/3468264.3473133

27. Kosorukov, I., et al.: Mining for mutation operators for reduction of informa-
tion flow control violations. In: IEEE/ACM International Conference on Au-
tomated Software Engineering, The New Ideas and Emerging Results (ASE-
NIER 2024). Sacramento (24 Oct 27-Nov 1 2024), http://dx.doi.org/10.1145/
3691620.3695308

28. Goldberg, D.E.: Genetic algorithms and Walsh functions: Part II, deception and its
analysis. Complex Systems 3(2), 153–171 (1989), https://www.complex-systems.
com/abstracts/v03_i02_a03/

29. Grefenstette, J.J.: Deception considered harmful. In: Whitley, L.D. (ed.) Founda-
tions of Genetic Algorithms 2. pp. 75–91. Morgan Kaufmann, Vail, Colorado, USA
(26-29 July 1992), http://dx.doi.org/10.1016/B978-0-08-094832-4.50011-8

30. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness land-
scapes. Journal of Heuristics 24(3), 265–294 (2018), http://dx.doi.org/10.1007/
S10732-017-9334-0

31. Langdon, W.B., Veerapen, N., Ochoa, G.: Visualising the search landscape of the
Triangle program. In: Castelli, M., McDermott, J., Sekanina, L. (eds.) EuroGP
2017. LNCS, vol. 10196, pp. 96–113. Springer, Amsterdam (19-21 Apr 2017), http:
//dx.doi.org/10.1007/978-3-319-55696-3_7

32. Veerapen, N., Daolio, F., Ochoa, G.: Modelling genetic improvement landscapes
with local optima networks. In: Petke, J., White, D.R., Langdon, W.B., Weimer,
W. (eds.) GI-2017. pp. 1543–1548. ACM, Berlin (15-19 Jul 2017), http://dx.doi.
org/10.1145/3067695.3082518, best presentation prize

33. Veerapen, N., Ochoa, G.: Visualising the global structure of search landscapes: ge-
netic improvement as a case study. Genetic Programming and Evolvable Machines
19(3), 317–349 (Sep 2018), http://dx.doi.org/10.1007/s10710-018-9328-1,
special issue on genetic programming, evolutionary computation and visualization

34. Petke, J., et al.: A survey of genetic improvement search spaces. In: Alexander,
B., Haraldsson, S.O., Wagner, M., Woodward, J.R. (eds.) 7th edition of GI @
GECCO 2019. pp. 1715–1721. ACM, Prague, Czech Republic (Jul 13-17 2019),
http://dx.doi.org/10.1145/3319619.3326870

35. Langdon, W.B., Bruce, B.R.: The gem5 C++ glibc heap fitness landscape.
In: Blot, A., Nowack, V., Faulkner Rainford, P., Krauss, O. (eds.) 14th In-
ternational Workshop on Genetic Improvement @ICSE 2025. Ottawa (27 Apr
2025), http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2025_
GI.pdf, forthcoming

36. Cohen, A.R., Vitanyi, P.M.B.: Normalized compression distance of multisets with
applications. IEEE Transactions on Pattern Analysis and Machine Intelligence
37(8), 1602–1614 (2015), http://dx.doi.org/10.1109/TPAMI.2014.2375175

37. Vitanyi, P.M.B., Balbach, F.J., Cilibrasi, R.L., Ming Li: Normalized information
distance. In: Emmert-Streib, F., Dehmer, M. (eds.) Information Theory and Statis-
tical Learning, chap. 3, pp. 45–82. Springer (2009), http://dx.doi.org/10.1007/
978-0-387-84816-7_3

38. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Transactions on
Information Theory 51(4), 1523–1545 (Apr 2005), http://dx.doi.org/10.1109/
TIT.2005.844059

39. Sapna, P.G., Mohanty, H.: Automated test scenario selection based on Levenshtein
distance. In: Janowski, T., Mohanty, H. (eds.) 6th Distributed Computing and
Internet Technology (ICDCIT’10), Lecture Notes in Computer Science (LNCS),
vol. 5966, pp. 255–266. Springer, Bhubaneswar, India (February 15-17 2010), http:
//dx.doi.org/10.1007/978-3-642-11659-9_28

17

http://dx.doi.org/10.1145/3691620.3695308
http://dx.doi.org/10.1145/3691620.3695308
https://www.complex-systems.com/abstracts/v03_i02_a03/
https://www.complex-systems.com/abstracts/v03_i02_a03/
http://dx.doi.org/10.1016/B978-0-08-094832-4.50011-8
http://dx.doi.org/10.1007/S10732-017-9334-0
http://dx.doi.org/10.1007/S10732-017-9334-0
http://dx.doi.org/10.1007/978-3-319-55696-3_7
http://dx.doi.org/10.1007/978-3-319-55696-3_7
http://dx.doi.org/10.1145/3067695.3082518
http://dx.doi.org/10.1145/3067695.3082518
http://dx.doi.org/10.1007/s10710-018-9328-1
http://dx.doi.org/10.1145/3319619.3326870
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2025_GI.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/langdon_2025_GI.pdf
http://dx.doi.org/10.1109/TPAMI.2014.2375175
http://dx.doi.org/10.1007/978-0-387-84816-7_3
http://dx.doi.org/10.1007/978-0-387-84816-7_3
http://dx.doi.org/10.1109/TIT.2005.844059
http://dx.doi.org/10.1109/TIT.2005.844059
http://dx.doi.org/10.1007/978-3-642-11659-9_28
http://dx.doi.org/10.1007/978-3-642-11659-9_28

40. Sakal, J., Fieldsend, J., Keedwell, E.: Genotype diversity measures for escaping
plateau regions in university course timetabling. In: Thomson, S.L., et al. (eds.)
Workshop on Landscape-Aware Heuristic Search (LAHS 2022). pp. 2090–2098.
GECCO ’23, Association for Computing Machinery, Lisbon, Portugal (15-19 July
2023), http://dx.doi.org/10.1145/3583133.3596334

41. Elgendy, I.T., Hierons, R.M., McMinn, P.: A survey of the metrics, uses, and
subjects of diversity-based techniques in software testing. ArXiv (16 Nov 2023),
https://arxiv.org/abs/2311.09714

42. Johnson, C.G., Woodward, J.R.: Information theory, fitness, and sampling
semantics. In: Johnson, C., Krawiec, K., Moraglio, A., O’Neill, M. (eds.)
Semantic Methods in Genetic Programming. Ljubljana, Slovenia (13 Sep
2014), https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=

1bdff27d8e4dbc6321bef2aab06feb13f642b977, workshop at Parallel Problem
Solving from Nature 2014 conference

43. Haraldsson, S.O., Woodward, J.R., Brownlee, A.E.I.: The use of automatic test
data generation for genetic improvement in a live system. In: Galeotti, J.P., Petke,
J. (eds.) Search-Based Software Testing. pp. 28–31. IEEE/ACM, Buenos Aires,
Argentina (22-23 May 2017), http://dx.doi.org/10.1109/SBST.2017.10

44. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation 4(4), 361–394 (Winter 1996), http://dx.
doi.org/10.1162/evco.1996.4.4.361

45. Ramamoorthy, C.V., Siu-Bun F. Ho, Chen, W.T.: On the automated generation
of program test data. IEEE Transactions on Software Engineering 2(4), 293–300
(December 1976), http://dx.doi.org/10.1109/TSE.1976.233835

46. Langdon, W.B., Harman, M., Yue Jia: Efficient multi-objective higher order mu-
tation testing with genetic programming. Journal of Systems and Software 83(12),
2416–2430 (Dec 2010), http://dx.doi.org/10.1016/j.jss.2010.07.027

47. Blot, A., Petke, J.: Comparing genetic programming approaches for non-functional
genetic improvement case study: Improvement of MiniSAT’s running time. In:
Ting Hu, Lourenco, N., Medvet, E. (eds.) EuroGP 2020: Proceedings of the 23rd
European Conference on Genetic Programming. LNCS, vol. 12101, pp. 68–83.
Springer Verlag, Seville, Spain (15-17 Apr 2020), http://dx.doi.org/10.1007/

978-3-030-44094-7_5

48. Blot, A., Petke, J.: Using genetic improvement to optimise optimisation algorithm
implementations. In: Hadj-Hamou, K. (ed.) 23ème congrès annuel de la Société
Française de Recherche Opérationnelle et d’Aide à la Décision, ROADEF’2022.
INSA Lyon, Villeurbanne - Lyon, France (23–25 Feb 2022), https://hal.

archives-ouvertes.fr/hal-03595447

49. Langdon, W.B., Clark, D.: Deep imperative mutations have less impact. Auto-
mated Software Engineering 32, article number 6 (2025), http://dx.doi.org/10.
1007/s10515-024-00475-4

50. Blot, A., Petke, J.: MAGPIE: Machine automated general performance improve-
ment via evolution of software. arXiv (4 Aug 2022), http://dx.doi.org/10.

48550/arxiv.2208.02811

51. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic
Programming – An Introduction; On the Automatic Evolution
of Computer Programs and its Applications. Morgan Kaufmann,
San Francisco, CA, USA (Jan 1998), https://www.amazon.co.uk/

Genetic-Programming-Introduction-Artificial-Intelligence/dp/

155860510X

18

http://dx.doi.org/10.1145/3583133.3596334
https://arxiv.org/abs/2311.09714
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1bdff27d8e4dbc6321bef2aab06feb13f642b977
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1bdff27d8e4dbc6321bef2aab06feb13f642b977
http://dx.doi.org/10.1109/SBST.2017.10
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1162/evco.1996.4.4.361
http://dx.doi.org/10.1109/TSE.1976.233835
http://dx.doi.org/10.1016/j.jss.2010.07.027
http://dx.doi.org/10.1007/978-3-030-44094-7_5
http://dx.doi.org/10.1007/978-3-030-44094-7_5
https://hal.archives-ouvertes.fr/hal-03595447
https://hal.archives-ouvertes.fr/hal-03595447
http://dx.doi.org/10.1007/s10515-024-00475-4
http://dx.doi.org/10.1007/s10515-024-00475-4
http://dx.doi.org/10.48550/arxiv.2208.02811
http://dx.doi.org/10.48550/arxiv.2208.02811
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X

52. Brameier, M., Banzhaf, W.: Linear Genetic Programming. No. XVI in Genetic
and Evolutionary Computation, Springer (2007), http://dx.doi.org/10.1007/

978-0-387-31030-5

53. Langdon, W.B., Banzhaf, W.: Repeated sequences in linear genetic programming
genomes. Complex Systems 15(4), 285–306 (2005), http://www.cs.ucl.ac.uk/

staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf

54. Langdon, W.B.: Genetic programming convergence. Genetic Programming and
Evolvable Machines 23(1), 71–104 (Mar 2022), http://dx.doi.org/10.1007/

s10710-021-09405-9

55. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Chawdhry, P.K., Roy, R.,
Pant, R.K. (eds.) Soft Computing in Engineering Design and Manufacturing. pp.
13–22. Springer-Verlag London (23-27 Jun 1997), http://dx.doi.org/10.1007/
978-1-4471-0427-8_2

56. Schmitt, L.M.: Theory of genetic algorithms. Theoretical Computer Science 259(1-
2), 1–61 (28 May 2001), http://dx.doi.org/10.1016/S0304-3975(00)00406-0

19

http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1007/978-0-387-31030-5
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_repeat_linear.pdf
http://dx.doi.org/10.1007/s10710-021-09405-9
http://dx.doi.org/10.1007/s10710-021-09405-9
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
http://dx.doi.org/10.1007/978-1-4471-0427-8_2
http://dx.doi.org/10.1016/S0304-3975(00)00406-0

	Population Diversity, Information Theory and Genetic Improvement

