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Abstract. Compression, e.g. gzip, gives algorithmic information theory
(Kolmogorov Complexity) based measures of string population diversity.
To boost it we use the GI tool Magpie and select programs of average
fitness that contribute most to variety, allowing evolution to automati-
cally tailor triangle.c for production speed. We calculate C source code
diversity via approximations to the Normalised Compression Distance
on Multisets (NCDm) using both Cohen and Vitanyi’s O(n2) approach
and our own, O(n) method, finding the cheaper, O(n), is equally good.
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1 Introduction

Diversity plays an important role in optimising finite populations, e.g. in ge-
netic algorithms [1], genetic programming (GP) [2,3] and genetic improvement
GI [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. In software engineering the widely
used application of diversity is to test sets [20][21][22][23][24][25], whilst informa-
tion theory has been applied to software robustness [26] and security [12,27]. The
problem of lack of local gradient, or worse deceptive fitness gradients [28,29] or
even fitness plateaux [30] is well known in optimisation and evolutionary com-
puting. Lack of local gradient appears to be important in population based
genetic improvement, with software engineering benchmarks such as the trian-
gle program (Section 3 [31,32,33]) having search landscapes [34,35] dominated
by large plateaus of equal fitness connected by relatively few improving muta-
tions. Although, using normalised compression distance (NCD), we investigate
the usefulness of program source code variability as a measure to decide which
individuals to discard and which to select for the next generation (Figure 1),
such syntax based population diversity gives mixed results.

Programs are strings but a high quality string diversity measure is a challeng-
ing topic. The Rolls Royce measure of string diversity is Vitanyi’s Normalised
Information Distance [37], which is based on Kolmogorov Complexity. Unfortu-
nately Kolmogorov Complexity is not computable but numerous approximations
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Fig. 1. Incorporating Cohen and Vitani’s Normalised Compression Distance
on Multisets (NCDm) [36] O(n2) into genetic algorithms. The GA population
can contain duplicates (hence multiset rather than set). Each generation the
GA selects from the current and previous generation the best (pink) and those
of the average fitness individuals (hatched) which make the population most
diverse (i.e. hardest to compress).

are available and these offer trade offs between accuracy and efficiency. Com-
monly used is Cilibrasi and Vitanyi’s compression based approximation, the Nor-
malised Compression Distance (NCD) [38,25]. At the other end of the efficiency
scale is the well known but more approximate Levenshtein distance [39,40,41],
also satisfying the metric space axioms, and in the middle is dictionary based
compression which can be efficient and produce a tight upper Kolmogorov Com-
plexity bound for a known, finite population.

We exploit a variant of NCD known as NCDm, or NCD for multi-sets, that
produces a single diversity measure or “diameter” for a multi-set, such as an
EC population [21,36]. In addition, we err on the side of efficacy rather than
efficiency, using Cohen and Vitanyi’s suggested quadratic-in-population-size ap-
proximation for NCDm as well as a linear one of our own invention. When im-
proving the execution speed of the triangle program, we find that these diversity
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measures are approximately equally useful across our GI runs. Since population
size is a confounding variable for diversity, we study a wide range of population
sizes from one to 1000. However run time increases quadratically and as no fur-
ther fitness improvement was found, we limit our experiments to one run per
scenario for populations sizes 200–1000.

Section 3 says how we use the popular software engineering triangle program
benchmark, whilst Section 4 describes our hybrid genetic programming and GI
Magpie system, particularly how it incorporates information based diversity into
selection. The experiments (Section 5) and results (Section 6) are followed by a
discussion of a 17% improved triangle program (Section 7) and our conclusions
(Section 8). But first the next section briefly describes Cohen and Vitanyi’s
diversity measure NCDm [36], how Feldt et al. [21] use it to measure test suite
diversity and then how we have used their approach within genetic improvement
to actively select breeding populations of evolving program source code.

2 Information Theory applied to Genetic Algorithms

The topic of information theory in genetic algorithms (GAs) and evolutionary
computing, e.g. genetic programming [42] and genetic improvement (GI) [43], is
vast. We will concentrate upon how we have applied it in population selection
in our GI and only note that the approach could be widely used in population
based evolutionary computing.

In genetic algorithms the importance of striking the right balance between
exploring to find new good regions of the search space and exploiting the good
parts already found has long been known [1]. We present (Figure 1) an informa-
tion theoretic way of combining fitness based selection and population diversity
based on Andrew Cohen and Paul Vitanyi’s [36] diversity measure for multi-
sets. Their Normalized Compression Distance (NCD) based multiset distance
(NCDm) is very general and has been applied to test set selection [21].

Cohen and Vitanyi’s underlying approach is to define the information con-
tent of a multiset (which in our case is the population) as using Kolmogorov
complexity. The Kolmogorov complexity of a string is the size of the smallest
program that can generate the string. However Kolmogorov complexity is not
in general computable and so they take their usual NCD approach and approx-
imate it as the length of the compressed string. (Here we will use the size in
bytes of the output generated by gzip.) As part of calculating the normalised
distance for a collection of strings (technically a multiset, as the collection may
contain duplicates) they wish to find the minimum compressed size with all pos-
sible orderings and to normalise by dividing by the largest compressed size of the
multiset excluding all possible subsets. Since there an exponentially large num-
ber of orderings they define an approximation which is still a metric but whose
computational complexity is only quadratic in the number of strings O(n2).

We start with their quadratic algorithm, as used by Robert Feldt et al. [21]’s
universal algorithm for measuring the diversity of test suites (“test set diameter”).
Our NCD based approach is feasible even for populations of 1000, but as expected
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it is slow. Therefore we introduce a further, linear time O(n) approximation,
which can be orders of magnitude faster (Section 6.6) and as effective.

2.1 Normalized compression distance (NCD) for Multisets (NCDm)

As there an exponentially large number of orderings, to approximate the smallest
compression distance over all possible orderings Cohen and Vitanyi [36] consider
only a quadratic number of orderings. To select which ordering, their basic ap-
proach is to order the multiset and then concatenate it into a single file which
can be compressed (Figure 1). They order the strings (here members of the pop-
ulation) first by size and then alphabetically. By placing similar strings next to
each other, there is a good chance the compression algorithm will perform well
and give a small compressed output file. They then in order omit one member of
the multiset and compress the new (now shorter) concatenated file. They work
through the whole multiset one at a time, to find which string contributed least
and discard it. This gives a multiset which is one member smaller. They repeat,
again removing the string which has least impact on the compression of the
new (smaller) multiset, until only 2 strings are left in the multiset. (Notice the
algorithm is described as sequential but parts could be run parallel.) We first
follow Feldt et al. [21] and in the next section describe how we use this central
part of Cohen and Vitanyi’s [36] algorithm as part of parent selection in the
evolutionary algorithm.

2.2 Information Based Parent Selection

To incorporate Feldt et al. [21]’s test case selection algorithm into a fitness based
evolutionary algorithm with population size N, we start with the current and
previous population (both of size N, total size 2N). From these 2N we select
N to be parents of the next generation. These are sorted by fitness (cf. rank
based selection [1,44]). Those better than average (median) fitness are automat-
ically selected. Those of worse than median fitness are automatically discarded.
We then apply information theory to chose those individuals of average fitness
which will contribute most to the breeding population of parents for the next
generation. (The number of programs of average fitness is quite variable, but in
these experiments it is typically near 10% of the combined population size.) Like
Feldt et al. [21] we apply Cohen and Vitanyi’s [36] NCDm to the source code of
the programs of average fitness but we do not calculate the distance, we merely
run the NCDm algorithm (Figure 1) until we have reduced the number of files
(here C programs) until it plus the number of better than average fitness mem-
bers of the combined populations is equal to N, the size of the next population.
This becomes our breeding population.

This is not in itself an elitist approach. We can choose to make it elitist
by passing one or more members of our breeding population unchanged to the
next generation. But we choose to create half the children using mutation and
the remainder by crossover. The approach could be readily applied to many
evolutionary algorithms which use separate populations.
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3 Genetic Improvement triangle.c Benchmark

The software engineering triangle benchmark takes three inputs and returns
one of four integer values representing the type of the triangle: scalene, isosceles,
equilateral or not a triangle. (Versions of the triangle program seem to go back to
1976 and Fortran [45]. We use our C version1 and test suite2 [46].) The important
function is 40 lines of C source code (1300 bytes) containing 16 comparisons and
8 return statements. The benchmark’s test suite is designed to cover all branches.
It spends much of its time checking for errors (“not a triangle”, 9 of the 14 tests).
In the source code most of these error checks are at the start of the code, with
another right at the very end.

In our genetic improvement experiment we suppose that the developers of
a real system have taken such a heavy error detection approach and later the
customer wants the code to be faster for everyday use. That is, in the triangles
example, we assume most of the time the code would be presented with three
numbers which are indeed the 3 lengths of the side of a triangle. So in our
experiment we start with the original code and tests but now weight the tests
so important ones score more in the fitness function (see Table 1).

The fitness test harness uses the Linux perf utility’s API to measure how
many computer instructions the mutated code takes on each of the 14 tests
and multiplies it by the weighting for that test. The mutant’s fitness is the 14
added together (Table 1). Note we minimise fitness scores. If the mutant gives
the wrong answer on any test or there is a run time error, its fitness is so poor
it will never be selected to be a parent.

Mutations and crossovers are able to re-arrange the existing C code to get
better scores by moving code that deals with lower weighted cases to further
from the start, allowing important cases to be dealt with more quickly.

Even in a time sharing network desktop, Linux perf’s instruction count
proved very stable and gave reliable fitness measurements. In contrast mea-
surements of elapsed time taken during fitness testing are very noisy [47,48,49].

4 Genetic Programming based on Magpie

Our genetic programming systems is based on Magpie [50]3. Magpie is a language
independent genetic improvement system written in Python. It has many op-
tions. We use only its XML mode. Using srcml (version 1.0.0) we convert the mu-
table source code into a single triangle.c.xml file. To avoid changes to Magpie, the
population selection (Section 2.2 and Figure 1) are done externally. Magpie and
GP parameters are given in Table 1. Our GP makes use of Magpie in three ways:

1. Magpie was run with triangle.c.xml to generate a pool of all 2535 possible
different XML mutations.

1
https://github.com/wblangdon/triangle/blob/master/jss/triangle.c

2
https://github.com/wblangdon/triangle/blob/master/jss/testcases_oracle.txt

3 https://github.com/bloa/magpie downloaded 2 October 2023.
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2. To create the initial GP population Magpie is run many times to create one
random mutant at a time. We reject mutants which do not compile, give
runtime errors or fail one or more fitness test. We keep doing this until we
have enough credible mutants to fill the initial population (mutant triangle.c
mean size 1320.1 ± 41.8 bytes).

3. As our GP is running, Magpie facilities are used to compile, run, test and
calculate fitness of each mutant.

4.1 GP Operations: Mutation and Two Point Crossover

The basic Magpie representation is like linear genetic programming [51,52] and
consists of a text based list of genes. Therefore it is easy to extract and insert
individual genes from and into Magpie genomes.

Mutation: a parent, selected uniformly at random from the breeding popu-
lation, is copied and the copy mutated by selecting uniformly at random one
gene within it and replacing it with one taken at random from the 2535 possible
different XML mutations (see item 1 in previous section).

With crossover: two parents are chosen uniformly at random from the breed-
ing population. The first is copied. Two random cut points are chosen uniformly
in the copy and in the second parent. The middle part (i.e. between the cut
points) of the copy is replaced by genes copied from the middle of the second
parent [53, Fig. 2].

Note mutation does not change the number of genes whereas crossover can
but on average neither changes the genome’s length.

5 Experiments

The GP/Magpie system was run 10 times on populations of 1, 2, 5, 20, 50, 100.
Also there were a few runs of 200, 500 and 1000. For each we tried three types
of selection (Figure 1 Section 2.2): based on Feldt et al.’s NCDm O(n2) [21],
our linear O(n) approximation to NCDm and finally breaking ties of average
fitness at random. The GP representation, fitness and parameters are given in
Table 1. The fastest triangle.c mutant on test cases may be found any time up
to generation 100.

6 Results

6.1 Speedup

Figure 2 shows the performance of the best in run for all ten repeated runs. As
expected there is variation between runs but typically the population needs to
contain at least 20 mutated programs for the search to do well. Indeed, although
we did a few runs with larger populations (200, 500 and 1000) there seems to
be no advantage in increasing it above 100. There is little difference between
the three selection algorithms (plotted with +, × or 2). Note the new linear

6



Table 1. Faster triangle.c

Representation: C code converted to XML by srcml. Variable length linear sequence of
XML mutations. Mutated XML converted to C code and compiled.

Fitness cases: 14 test cases, each 3 sides of triangle and expected classification. Test
suite designed to cover original C code.
Test suite weighting to favour important outputs: scalene and equilat-
eral (one test each) weight 81, isosceles (three tests) weight 27, not a
triangle (nine tests) weight 1, (Section 3).

Selection: Fitness is the sum of the number of instructions taken by each test
multiplied by its weighting

fitness =
∑14

i=1
X86 instructions for test i× weight i

If mutant fails to compile, fails at run time, exceeds 2 second time out
or gives wrong answer on any test its fitness is so bad it will never have
children.

1st fitness based rank selection and 2nd contribution to population
diversity, see Figure 1 and Section 2.2.

Population: Panmictic, non-elitist, generational, size 1, 2, 5, 10 · · · 1000.
initial pop Every triangle.c is mutated exactly once. All compile and run (page 6

item 2.). Initial fitness 7929–12578 (most as unmutated code 9069).
Parameters
Magpie: Python version 3.10.1, GGC version 10.2.1, compiler options -O3

-DNDEBUG. Magpie defaults except [search] warmup=1. XML edits:
StmtReplacement StmtInsertion StmtDeletion ComparisonOperator-
Setting ArithmeticOperatorSetting NumericSetting RelativeNumeric-
Setting StmtMoving

GP : 50% subtree XML crossover, 50% subtree XML mutation (Section 4.1).
100 generations. No size limit.

approximation × to estimating population diversity does as well as the quadratic
approach inspired by Feldt et al.’s Test Set Diameter O(n2) [21] + and it is
considerably faster (Section 6.6). Except for some runs with a population of only
one or two, all runs make progress. If we concentrate on runs with a population
of 20 or more, the median speed up is 16%.

6.2 Evolution of Performance

The performance of the three types of selection with various population sizes
are summarised in Figures 2 and 3. Figure 3 plots the evolution of the fastest
(weighted) triangle.c program in the population at each generation for a typical
run at each population size. Typically each run does not converge and the pop-
ulations contain a range of fitness values. As expected performance depends on
population size, with larger populations doing better. Runs with a population
containing a single program (which will have been created by crossover) typically
make no progress (shown by a horizontal line at the top of Figure 3).

In the absence of elitism (Section 2.2 above), even though the best in the
population is guaranteed to be part of the breeding population, they have no
guarantee that they will be selected from it for either way of making genetic
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Fig. 2. Fastest triangle.c mutant found in ten runs by generation 100 with
pop size 1, 2, 5, · · · up to 1000 (only 1 run 200–1000). Select best from current
and previous generations to be parents. (One linear × run with population 1 got
stuck at fitness 11 170.) Small horizontal noise added to spread data. Section 6.1.

changes. And even if selected, their children will be either mutated or created by
crossover. Either of which may give a child with worse (or indeed better) fitness.
Thus although a downward trend can be seen in Figure 3, fitness does not usually
improve monotonically. Indeed, since we are hoping for diverse populations we
should not be disappointed that evolution does not lock into the “best seen so
far” fitness value.

6.3 Evolution of Population Diversity

Figure 4 shows the average evolution of information contents of the population
in ten runs with a population of 100 for the three selection schemes and Figure 5
presents a summary by selection scheme and population size (note log scales).

Typically only about 10% of the population have average fitness (where in-
formation content is used to break ties, Section 2.2). Suggesting, in contrast to
typical tournament selection [3, Sect. 2.3], selecting the best of the current and
previous generations with 100% (50% crossover + 50% mutation) genetic modi-
fication avoids too high a selection pressure and does not drive the population to
converge on a single fitness value [54] and instead our GP retains diverse fitness.

As with Figure 2, Figure 5 presents a summary of all the runs for each
selection type and population size. As typically the population’s information
content does not tend to rise to a maximum at the end of the run but often falls
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Fig. 5. Average compressed population of triangle.c mutants (see Section 6.3)
in ten runs up to generation 100 with populations 1, 2, 5, · · · up to 1000 (only
1 run 200–1000). Small horizontal noise added to spread data.

towards the end, Figure 5 gives the average information content across each run.
As expected, Figure 5 shows the higher performing larger populations contain
more information than the smaller populations of triangle.c mutants. Whilst,
in terms of population information content, our linear O(n) × approximation
behaves as Cohen and Vitani’s O(n2) NCDm [36] +. Although the fitness only
approach 2 gives on average less compressible populations (p = 4 10−17 two-
sided non-parametric Mann-Whitney U test), across the 73 runs of each type
the median difference is only 13%.

The size of the triangle.c mutants (phenotype) is determined by the muta-
tions applied (genotype). On average both information based selection schemes
increase the C source code by about 10% (to 1430 bytes) while with fitness only
selection there is more bloat (24%, 1617 bytes). gzip is very good at compressing
the populations. For example with populations 1, 2, 5 and 10, it compresses the
whole population into less than half the space of the original program. Even with
the larger populations (e.g. 100) gzip gives average compression ratios of 46–74.

6.4 Evolution of Genome Size

To illustrate the evolution of the number of genes, Figure 6 shows the growth of
the average genome size for ten runs with a population of 100 triangle.c programs.
It plots 10 runs with O(n2) (solid lines), 10 runs with our linear information based
selection (dashed lines) and 10 runs with fitness only selection, where fitness ties
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Fig. 6. Evolution of genome size for ten runs with the three selection schemes.
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are broken randomly (dotted lines), showing the median number of genes rising
from 1 initially to 17 ± 14 in generation 100. (The instances of triangle.c similarly
grow from 1320 on average to 2000 ± 400 bytes by generation 100.)

Although there are fluctuations between generations, an upward trend, known
as bloat [55], can be seen. Therefore Figure 7 gives genome statistics for the end
of each run with each of the population sizes and each of the three selection
schemes. Figure 7 shows there is considerable variation between independent
runs (note log scales). However there is a trend for larger populations (which
tend to contain fitter programs) to contain more genes (i.e. more Magpie muta-
tions of triangle.c, see also Figure 8). In runs with the same population size, all
three approaches (+ × 2) tend to have on average a similar number of mutations.

6.5 Size of Best Solutions

Figure 8 shows all the best in run mutant’s performance (y-axis) and their num-
ber of mutations (x-axis). Figure 8 shows a clear trend for faster (weighted)
programs to have had more changes. However a few mutated triangle.c with
only one, two or three changes do very well. The three selection schemes do
approximately as well as each other.

6.6 Time to do Selection

With fitness only selection and our linear O(n) approximation, selection typi-
cally takes < 1 second per generation on an otherwise unladen multi-core 32GB
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Fig. 9. Example Magpie changes to triangle.c which reduces its (weighted)
instruction count from 9069 to 7544 (17% improvement). Pink code removed,
green inserted. (Initially 1300 bytes, mutant 1438 bytes.) See Section 7.

3.6 GHz Intel i7-4790 desktop. Naturally the O(n2) algorithm [36] scales badly
with population size and in the worst case the time to select the parents with
the largest population (1000) reaches almost two hours.

7 Discussion: Example Small High Fitness Mutant

Figure 9 shows a high scoring Magpie mutation as a C source code patch. The
example is from run 6 with a population of 50 using O(n2) selection (we have
deliberately chosen a small example to make explaining it easier). The mutated
triangle.c is now larger (and so more difficult to compress). It was discovered
in generation 15. As the run continued, evolution found similar mutations with
identical scores containing the same genes (some repeated) plus others giving a
still larger C source code. The Magpie genome for this mutation contains two
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genes StmtInsertion | StmtMoving. Both StmtInsertion and StmtMoving

mutations have two components: the XML stmt level code to be inserted or
moved and the XML location where it is to be placed.

StmtMoving is perhaps the easiest to explain, it moves the compound if

(XML stmt 1, C sources lines 17–19, shown with pink shading in Figure 9) and
inserts it at XML inter block 19 (before line 30 in triangle.c, central green
shading in Figure 9). This means two of the three highly weighted tests for
isosceles (return 2) and the even higher weight scalene (return 1) (see Table 1)
do not incur the cost of checking for non-positive lengths, which correspond to
not a valid triangle (return 4). However it also means risking missing some error
conditions, which are not in the test suite.

The first mutation StmtInsertion copies another compound if from XML
stmt 11 (lines 34–36 of triangle.c) and inserts it at XML inter block 30 (before
line 48 in triangle.c, last green shaded region in Figure 9). In the benchmark’s
test suite there are three tests with invalid zeros as input, notice that the now du-
plicated compound if detects them all. Thus, if because the initial tests for zero
side length have been removed, execution reaches line 48, the duplicated code
will still correctly detect the bad inputs and return 4. So the mutated compiled
(with -O3) code gets a higher score by classifying important test cases earlier.

Notice how Magpie’s operation on XML, effectively at the compiler AST
level, means the mutations can easily operate with compound statements cover-
ing multiple lines and (except in a few odd ball cases) the mutant remains valid
C code. (Even the indentation is correct.)

8 Conclusion

We have demonstrated how evolutionary algorithms can use information theory
based population diversity alongside fitness selection. In the case of genetic im-
provement we used program source code, whereas Genetic Programming might
use trees or instructions and Genetic Algorithms would use bit strings. Being
compression based Cohen and Vitanyi’s Normalised Information Distance (NID)
in its single measure for a multiset (population) form (NCDm) would work with
GP and GAs as well. We also invented a much faster linear version of Cohen
and Vitanyi’s quadratic approximation.

Apart from Pareto multi-objective combinations of our information and tra-
ditional fitness measures or systematically investigating more and weaker ap-
proximations to NID and NCDm in the hopes of a Goldilocks trade off, perhaps
the next thing to consider is other ways to exploit this diversity measure. Popu-
lation size is a confounding random variable for diversity so rather than theory
that predicts convergence to optimal on the basis of population size [56] we could
predict convergence on the basis of NCDm diversity diameter.
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