Chapter 1

Long Term Evolution Experiments
with Linear Genetic Programming

William B. Langdon, Computer Science, University College, London, UK

Abstract Inspired by Richard Lenski’s Long-Term Evolution Experiment, we use
the quantised chaotic Mackey-Glass time series as a prolonged learning task for
artificial evolution in the form of steady state linear genetic programming using
multi-threaded AVX512 GPengine to reach 100000 generations, 4 million arith-
metic instructions and speeds of up to the equivalent of 361 billion GP operations
per second (361 10° GPops~!) on a 3.1 GHz multi core computer. Typically finding
hundreds of fitness improvements in the later stages of the runs. Long fit programs
are typically robust to two point crossover and random point mutation. They loose
entropy monotonically towards the entropy of the fitness target. However almost
all their instructions, despite not being reversible, are isentropic, i.e. do not loose
entropy, and instead shuffle information between registers.

Keywords: Autonomous open-ended learning in machines, LTEE, time series
prediction, Voas PIE, information theory, failed disruption propagation, FDP, adia-
batic irreversible arithmetic, population convergence.

1.1 Introduction

Rich Lenski’s 38 year Long-Term Evolution Experiment [Lenski and others, 2015]
has shown, even in stable environments, bacteria can continue to evolve, even af-
ter 82500 generations. (In contrast Homo Sapiens is some 9300 generations olcﬂ)
Previously we have asked the question what happens if we allow artificial evolu-
tion, specifically tree genetic programming (GP) [Koza, 1992 [Poli et al., 2008], to

Revision : 1.75 Forthcoming Linear Genetic Programming, Wolfgang Banzhaf and Ting Hu Eds.

! [Wang et al., 2023] show that the length of human generations has changed over time but estimate
on average it has been 26.9 years. Estimates of when the Homo Sapiens species started vary but
250000 years ago seems reasonable. Giving about 9 300 generations in total.
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evolve for tens of thousands, even hundreds of thousands of generations [Langdon
and Banzhaf, 2022]. Whilst we found evolution continued, in purely hierarchical
tree GP using only crossover, we found the rate of innovation fell inversely in pro-
portion to program size due to failed disruption propagation [Petke et al., 2021}
Langdon and Clark, 2024; [Langdon and Clark, 2025|| giving robustness [Langdon
and Petke, 2015] and promoting convergence of populations of GP trees [Langdon,
2022a]. Information theory shows failed disruption propagation is inherent in digi-
tal computing and in deep programs can quickly lead to almost all changes (good or
bad) being invisible, and so evolution simply drifting and innovation stalling.
Instead we have tried to promote the idea that, to avoid failed disruption propaga-
tion stifling evolution, for long term innovation we need to evolve thin walled soft-
ware with a high surface area (such as inspired by human lungs [Langdon, 2022b]).
We wish to ensure that fitness disruption in the bulk of the code (where most genetic
operations will act) has only a short distance to travel to the surrounding environ-
ment and so is likely to be visible and so beneficial changes can be seen and re-
warded (and negative changes be seen and punished) [Langdon and Hulme, 2024].
Like chemical reactions occurring on a catalyst’s surface, rather than membranes or
skins separating computing regions, we want computing to occur on such surfaces.
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Fig. 1.1 Evolution of best fitness in ten runs of discrete Mackey-Glass chaotic sequence prediction
with population of 500. Number of fitness improvements given at the end of each run’s trace. (Note
the similarity with some biological fitness measures in Lenski’s LTEE, e.g. [Chihoub et al., 2025,
Fig 1A].) The same colours are used for the ten runs in Figures
and



1 Long Term Evolution Experiments with Linear Genetic Programming 3

Our intention is to investigate other evolving architectures. We start with linear
genetic programming [Nordin, 1994; [Banzhaf er al., 1998; Brameier and Banzhaf,
2007)] (Figure but will in future investigate evolution of arrays or networks
of such programs. We also swap from continuous (float) symbolic regression to
predicting discrete (integer) time series, deliberately choosing a chaotic series, as it
should prove hard enough to continually challenge evolution. Indeed the Mackey-
Glass series (Figures and can be extended should the predictor approach
solving any finite part of it.

We do not want to impose arbitrary limits but it must be admitted that without
size control we expect bloat [Koza, 1992; Tackett, 1994; [Langdon and Poli, 1997;
Altenberg, 1994; |Angeline, 1994} Banzhaf and Langdon, 2002} |Poli and McPhee,
2013]l. Therefore we need a GP system not only able to run for perhaps a million
generations but also able to cope with programs of well in excess of a million nodes.

The following sections (I.2HI.5.4) describe our linear genetic programming sys-
tem (GPengine), whilst Section [I.6] describes the evolution up to 100000 gen-

erations. Sections provide detailed analysis of programs at genera-
tion 500, particularly in terms of information theory,|1.6.3H1.6.4] and genetic robust-

ness/fragility (Sections[I.6.5[1.6.6). We conclude in Section [I.7]that evolution with
a stable fitness function can create closed linear programs of huge resilience which
preserve internal variable data distributions for thousands of instructions. Therefore
whilst long term evolution is possible with linear GP, large linear programs suffer
from the same over stability problem as large evolved trees (although the mech-
anisms are different); both types of populations converge to become excessively
robust and the rate of innovation falls as the programs get bigger.

1.2 Linear Genetic Programming GPengine

GPengine is based on code provided by Peter Nordin (the author of the famous com-
mercial linear genetic programming system Discipulus [Nordin, 1994; [Francone,
2001]). In [Langdon and Nordin, 2001] we evolved functions with four outputs
while in [Langdon and Banzhaf, 2005|| this was reduced to one for the Mackey-
Glass prediction problem. GPengine is available via https://github.com/
wblangdon/GPengine.

1.3 A Hard Benchmark: Mackey-Glass

Whereas previously for our long term tree GP experiments, we had used a well
known symbolic regression benchmark, which allows contiguous incremental im-
provement, here we chose a deliberately difficult discrete (short) integer prediction
benchmark.


https://github.com/wblangdon/GPengine
https://github.com/wblangdon/GPengine

Fig. 1.3 Mackey-Glass benchmark, Figure distribution of values. Entropy 6.67 bits.
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We used the first 1201 data points of the IEEE benchmark Mackey-Glass chaotic
time series, with T = 17 (Figures[I.2]and[I.3). Being chaotic, the prediction problem
should be impossible, nonetheless genetic programming can evolve approximate
solutions [Oakley, 1994], and, as we shall see, despite the deliberate granularity of
using byte sized integers, linear GP can improve these over time.

Mackey-Glass is a continuous problem. The benchmark converts it to discrete
time and we digitised the continuous data to give byte sized integers (by multiplying
by 128 and rounding to the nearest integer) [Langdon and Banzhaf, 2005].

The dataset is available via the GPengine GitHub pages and via http://www.cs.ucl,
ac.uk/staff/W.Langdon/ftp/gp-code/mackey_glass.tar.gz

1.4 Steady State GP, GPengine, Parallel Fitness Evaluation

To contrast with our previous generational tree GP runs (Section [I.1)), we use
GPengine which is a steady state evolutionary system. In steady state genetic algo-
rithms new children are immediately added to the evolving population and the same
number removed, thus keeping the population size constant [Syswerda, 1989]. In
nature this can be seen as similar to trees in a temperate forest, where even though
the trees may only fruit once a year, the forest contains both seedling and mature
trees. Whereas in generational Genetic Algorithms (like our earlier tree GP runs)
each population is distinct and when the new generation is formed everyone in the
previous generation is killed. In nature, this is like annual plants, which die in the
autumn and only their seeds survive the fall and the winter to sprout and new plants
grow in the spring.

GPengine uses two point crossover (Figure [I.5). Two fit parents are chosen by
binary tournament selection (Table and two others are similarly chosen to be
removed from the population. In fact they are overwritten by the two newly created
children.

The two children are produced one after the other and similarly their fitness’
are evaluated one after the other. Notice, here in steady state, fitness is calculated
immediately, whereas in a generational GA, the whole population can potentially
be processed in parallel together. Therefore GPengine interprets their 1201 fitness
cases (see Section in parallel using vector instructions [Langdon and Hanna,
2026; [Langdon, 2025]] and loosely linked Linux ptheads. Up to nineteen 3.1 GHz
AMD EPYC 9554 cores and 30 GB memory were used in parallel. (Notice although
generational GAs have both a parent and a child population, for the same size of
population, they can be implemented to use the same memory size as a steady state
GA [Langdon, 2020b; |Langdon, 2020c].)


http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/mackey_glass.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/mackey_glass.tar.gz
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1.5 Experiments

Table contains the details of our ten extended linear genetic programming runs
with the Mackey-Glass benchmark. As gathering data needed for entropy analysis
etc. imposes further runtime overheads, for Sectiononwards, where we studied
the evolved programs in detail, we re-ran the same runs but only for the first 500
generation equivalents.

Table 1.1 Mackey-Glass prediction with Linear GP

Terminal set: Unsigned 8 bit integers. Variablesa, b, ¢, d, e, £, g, h.
Integer constants 0 to 127.

Function set: + — x DIV

Fitness cases: 1201 Mackey-Glass examples. Given 8 prior values (-1, -2, -4, ... -128 steps before)
predict next y. See FigureE}

Selection:  Tournament size=2, minimise fitness = ):}ig' |GP(xi) — yi

Population: 500, panmictic, steady state.

Parameters: 500 or 100000 generations. Random initial population (500) size between 1
and 14 instructions. Max 4 000 000 instructions. 90% two point 2 child crossover,
40% chance both XO children subjected to random point mutation 4 times.
10% reproduction.

DIV is protected division (y!=0)? x/y : 0

|2

1.5.1 Evolving new programs: Crossover and Elitism

After the initial population has been created, Evolve continuously creates pairs
of new children. To keep the population constant (DefaultPopSize = 500), it
also removes two members of the population. Evolve calls Tournament which
starts by selecting uniformly at random four different members of the current popu-
lation. (Note this means DefaultPopSize must be at least 4.) Two binary (two
member) tournaments are held to choose two winners and two losers. The winners
will be parents and used to create two children, who will replace the two losers.

At random (fraction PCrossover = 90%) pairs of children are created by
Crossover (otherwise Reproduction is used, see below). Uniformly at ran-
dom Crossover chooses two crossover cut points in each parent (see top pair
of programs in Figure and the middle code segments (diagonal hatching) are
exchanged to give the two children (lower pair in Figure[T.5).

For efficiency and practicality GPengine imposes a limit (MaxInstr) on the
length of the evolved programs. If either child would exceed it (4 million instruc-
tions), one right hand cut point is deterministically adjusted, so that the new length
of the inserted code ensures this child is of maximum length (rather than bigger).
That is, ChooseXO makes the smallest adjustment to the randomly chosen cut
points which is compatible with MaxInstr.
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Fig. 1.4 Fragment of Mackey-Glass time series (Figure. Eight arrow heads (a—h) show source
of data for registers a—h used to predict the value at the next timestep (here t=1000). a 128 time
steps before (i.e. t=872), b 64,c 32,d 16, e 8, f 4, g2 and h 1 step before 1000. E.g. in this t=1000
fitness case, register h holds the value (124) at t=999.
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Fig. 1.5 Two crossover points are randomly chosen in each parent (top two genomes) as cut points,
to give two children (lower pair). Notice the middle exchanged code (red-pattern and white-pattern)

are typically of different sizes, so the two child programs are typically not the same lengths as their
parents.
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This means if the whole population of programs has bloated to be MaxInstr
instructions long, the two code fragments exchanged by the parents to create the off-
spring will be of the same length. However even then, crossover remains true to its
original nature and does not become homologous [Nordin et al., 1999; [Francone et
al., 1999; Langdon, 1999;[Hansen, 2003]. Instead, although the crossover fragments
are the same length, they are not drawn from the same locations and so we would
expect the two children not to be identical to their parents.

Typically with tournament selection in a steady state genetic algorithm fitness
will be monotonically improving. That is, the best in population should never get
worse. This is because the current best individual will keep winning tournaments
and never be selected for replacement. In principle it could be immortal. However
this depends on how ties are handled. Usually tournaments where everyone has the
same fitness are decided randomly, so even the best individual in the population can
die if multiple programs in the population have the best fitness. Therefore steady
state GAs can be considered naturally elitist, in the sense that the elite best will
always remain in the population until something better evolves.

Nonetheless, in GPengine not all new children are created by crossover and mu-
tation. Instead 10% (i.e. 100 - PCrossover) are copies of the winners (elite) of
the binary tournaments. Reproduction is used to create the remaining ten per-
cent of offspring by copying the two fit winners over writing the two losers. As the
children are identical to their parents, there is no need to evaluated their fitness, and
instead their fitness values are simply copied from their parents.

1.5.2 Mutation

40 percent of the time both children produced by crossing over two parents are mu-
tated. GPengine uses point mutation, so that four times for each child Mutation
chooses uniformly at random an instruction (Figure[I.6) to be mutated. As reselec-
tion is allowed, potentially an instruction could be chosen more than once, but with
long programs this is unlikely. As the programs get longer, there is proportionately
less chance for an individual instruction being chosen for mutation. Nonetheless as
all instructions are executed, even in long programs, every mutation can potentially
impact the child’s fitness.

Arg 2
Output Arg 1 Opcode 0.127
a.h a.h +-*/ “or
a.h

Fig. 1.6 Format of a GPengine instruction. Notice there are no branches or loops, so effectively
all instructions are executed exactly once for each of the 1201 test cases.
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To inflict a point mutation, one of the four components of the chosen instruction
(Figure[I.6) is chosen uniformly at random. In each case, that part of the instruction
is replaced by a new randomly generated component. To ensure the new instruction
is syntactically correct, the code that was used to create the initial random popula-
tion is reused. Only in the cases of the output register (a, b, c, d, e, f, g
or h) and the Opcode (+, —, X, or protected division) does MutateInstr ensure
that the new field is different from the existing value.

1.5.3 Optimisation, Ineffective Code Removal

As well as executing fitness cases in parallel (Section [I.4), to speed up fitness
evaluation we ignore instructions that do not impact the output (given by the final
value in register a). We follow Peter Nordin’s intron removal algorithm. Essentially
Simplify does two passes. The first scans backwards from the program’s end
finding the last instruction which overwrote register a, noting where it is and extract-
ing the registers (addact ive) it depends on. Then it continues to scan backwards
using testactive to find (and record by setting needed [1]) the locations of
the previous instructions which wrote to them, and so on to the beginning of the
program. Notice the set of active registers need not expand to include them all
because once a register has been over written its previous value does not matter and
so clear is used to remove it from the active set.

For added efficiency, addactive checks for some special cases which mean
the output of an opcode does not depend upon the values held by the input registers
and so does not add them to the act ive set. With our simple function set, the only
case where this is true is where a register is subtracted from itself (which always
gives zero).

Although it is possible to create and interpret the set of active instructions in re-
verse order, it is simpler to use the intermediate array (needed) to hold the ordered
list of active instructions and use a second pass to create, the now shorter, list of
active instructions (Instr2). Then pass them to the interpreter to be executed in
the usual forward direction. Since the cache hardware may assume data is used from
start to end, interpreting in the usual direction may be faster (as well as simpler). Re-
member Simplify is only needed once, whereas the program will be interpreted
1201 times (once per fitness test case).

In our runs the fraction of remaining code which is executed is highly variable
(see Figure [I.9). With Simplify’s intron removal giving between 3.3x and 700
fold reduction in number of instructions (median 14). This is one factor in the wide
range of speeds obtained by GPengine, see Figure[I.7]
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Fig. 1.7 Evolution of effective speed in ten runs of discrete Mackey-Glass chaotic sequence pre-
diction with population of 500. Means every 100 generations. (Due to a transient, data for 19 Dec
3-4pm not plotted.)

1.5.4 Fitness Function

The first time CalcFitness is called, for efficiency, it extracts all the 1201 test
inputs and their associated correct answers into arrays Reg and Output.

By default as many threads as the computer has cores will be used to calculate
each new child’s fitness. nthreads is set in main either by the user via the com-
mand line or otherwise to the default provided by the system routine get _nprocs.
(Here we set nthreads =19, as with AVX vector instructions each thread can si-
multaneously process 64 fitness cases and 19 x 64 = 1216, which exceeds our 1201
fitness cases.)

Each thread runs interpret which grabs and executes the next 64 fitness cases
which are free (a mutex lock is used to ensure the threads do not try and run the same
test cases). If need be, to balance the load between the threads, as a thread finishes
each group of test cases it takes and processes the next free group, until all 1201 test
cases are completed.

interpret calls Interpret 64, which processes the 64 test cases in paral-
lel. Interpret64 starts by loading the given test cases into the eight registers
(a to h, actually 64 x 8 are processed simultaneously), and then interpreting the
InstrLen2 effective instructions (held in array Instr2, Section[I.5.3). The pro-
gram is evaluated on the 64 test cases simultaneously. At the end, the output regis-
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ter a is saved in array element output for those test cases (again 64 are processed
simultaneously).

When all the threads have finished, CalcFitness compares the answer for
each of the 1201 test cases with the correct one Output [i] and squares the
difference (error;). The individual’s fitness is the sum of these squared errors.
GPengine tries to minimise this error. Figure [I.1] plots falling Root Mean Squared

— /1 _y1201 2
error RMS = 4/ 1557 X250 error;“.

1.6 Results

Figure [T.1] shows typically even late into the run, linear GP continues to find ways
to innovate. Also, not only do the programs increase in size (Figure[I.8), but so too
does the number of instructions actually executed (Figure[T.9).

We anticipated the possibility of power law [Langdon, 2000] or even exponential
[Nordin et al., 1995]] growth in program size. However only one run of ten shows
almost continual rapid increase in program length (run 6 blue line Figure [I.8). The
others show slower growth, often followed by a rapid increase phase. The impact of
the size limit, 4 000 000, is clearly seen in Figure @

Figure[I.I0|concentrates upon the period of explosive growth in program length.
Figure [I.10] plots the average program size in the population from the last time it

run 6 }un 8 run 10 rdn 5,3,2 run 9
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Fig. 1.8 Evolution of average genotype length in ten runs of discrete Mackey-Glass chaotic se-
quence prediction with population of 500.
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Fig. 1.9 Eliminating known introns so only a fraction of the genome is executed (saving 3.3-700,
median 15.7).

exceeds 100 000 instructions until when many crossovers are impacted by the max-
imum program length (Section|[T.5.T)). So that exponential changes would appear as
straight lines, rather than curves, Figure [I.I0] uses a log vertical scale. If we con-
sider only the end of the runs, 60% of them (runs 2, 3, 5, 6, 8, 10) appear to suffer
exponential growth in size at some point [Banzhaf et al., 1997]].

Figure [I.T1] shows, although innovation continues, the rate of fitness improve-
ment appears to fall more-or-less linearly with increase in program size (see also
Section [I.6.6] page [27). Notice although there is considerable noise and each run
has a different slope, in every case the RMS best fit regression line approaches the

origin. That is, the
1

innovation rate o« —— (1.1)
program length

Even with relatively weak selection pressure [Goldberg, 1989|] and steady state
[Syswerda, 1990] with binary tournaments [Blickle, 1996; [Langdon, 1998|l, we see
evidence of population convergence. For example, Figure [I.12] shows the popula-
tions convergence in the sense that by the end of the runs typically more than 100
individuals have the best fitness. Whilst Figure [[.13] shows even stronger, in most
runs (runs 2, 3, 6, 8, 9, 10) more than 40% of individuals return identical values
across all 1201 training cases. That is, even though the population does not predict
the Mackey-Glass sequence exactly, many individuals within the population make

exactly the same mistakes as each other.
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Fig. 1.12 Mackey-Glass linear GP population convergence. Number of programs with the best
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late identical answers across 1201 test cases. Log scales.
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1.6.1 Reminder of Entropy

Entropy is a property of distributions; entropy = — Y plog p. Where p is the prob-
ability of an event and the sum Y is over the whole probability distribution. In in-
formation theory it is common to express entropy in terms of bits and so log to the
base 2 (i.e. log,) is used. Since p cannot exceed 1, log, cannot exceed 0 and so the
minus sign outside the summation ensures that entropy cannot be negative. Also if
p =0, plog p is taken as 0.

A rare event has a small chance of occurring, i.e. p is small, and therefore —log p
is big. (For example, a one in 1024 chance event p = 1/1024 gives —log, p = 10.)
We can think of — log p as how surprising the event is and so we can think of entropy
= —Y plogp as how surprising on average the whole distribution is.

For a finite discrete distribution maximum entropy (maximum surprise) occurs
when each possible event occurs with the same probability. If there are n events
p = 1/n, then the entropy of the distribution is = — Y plog, p = —n(1/n)log, (1/n)
= —log, (1/n) = log, n bits.

If a lot of data, independently drawn at random from a distribution, is to be trans-
mitted without error, the entropy of the distribution gives the maximum possible
degree of compression. For example, a binary file might have an entropy of 8 bits
per byte, whereas a text file of numbers (0-9 and space) might have entropy of
—11% log, (ﬁ) = logy(11) = 3.46 bits per character. Thus transferring the com-
pressed text file can be done at best by transmitting 3.46 bits per character but the
best compression for the binary file is 8.0 bits. Of course typical files are not ran-
dom, nevertheless on large files compression tools, such as gzip, often approach
compression ratios suggested by entropy.

1.6.1.1 Entropy: small distribution example

Suppose we have only two outcomes (e.g. 0 and 1), with probabilities p and g (note
p+q=1). Figure plots the entropy = —plog, p — gqlog, g of the distribution
for different values of p. Notice when we are almost certain of the outcome (p or
q is near 1.0), entropy is low. Conversely, when either O or 1 are similarly likely
(prgr %), we do not know which we will get (so either 0 or 1 will be a surprise)
and entropy is near its maximum value, 1 bit.

1.6.1.2 Entropy: Mackey-Glass Benchmark distribution

If we look at the 1201 data points in our fitness set (Figure [[.Z) we can see only
one has the value 32 (Figure. So we can assign value 32 the probability ﬁ.
Whereas the value 145 occurs 30 times (probability %). For small distributions
we can take the summation (}’) in our entropy calculation across the whole distri-
bution. Here we know our data values all fit into a byte so summation over 0..255
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():%55 ) is more than sufficient. (For larger ranges we use the C++ standard template
library’s hashmap routines.) Thus the entropy of discrete Mackey-Glass Benchmark
distribution is = — Y% p;log, p; = 6.67 bits.

Entropy is a very robust measure of distributions; in that, in many cases, “small”
changes to a given distribution can be made which changes its entropy very little.
Indeed in many cases the entropy of an actual distribution will be close to (but not
exceed) that of a “Normal” or Gaussian distribution with the same standard devia-

tion o, whose entropy is 2.04 + log, o bits [Langdon and Clark, 2025, Appendixﬂ

1.6.1.3 Entropy: Program State

In the following Sections we use entropy to measure the information
content within programs. (For our purposes we exclude external files and I/O de-
vices which the program may read and/or write.) Although information can be
stored in many ways, typically we need only consider the memory a program is
using, e.g. control flags, registers, stacks and RAM. Sometimes memory struc-

2 The entropy of a Gaussian distribution is % log (271:662) = %10g (2me) +log 6. Notice a straight
forward approximation is entropy = log, (standard deviation) in bits. And that the constant term,
% log (2me), contains all our favourite mathematical constants (%, 2, m and e) and numerically, when
using log,, evaluates to about two. Although the Mackey-Glass Benchmark distribution (page[) is
far from a smooth Gaussian, yet a Gaussian distribution with the same standard deviation (30.17)

has an entropy of 6.97 bits, compared to the Mackey-Glass Benchmark’s 6.67 bits.
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tures (e.g. stacks) are dynamic. Typically deleted memory or memory past the stack
pointer are viewed as inaccessible and ignored.

In our case, and in the case of many linear genetic programming systems, infor-
mation is only stored in a fixed number of registers. (Here for simplicity we assume
all registers are identical and they can all be both read and written to.)

For entropy calculations we have to treat the memory as a whole (not as 8 sepa-
rate registers) and find the distribution of combined values it contains across all 1201
fitness cases. For example, at the start of the program, all the registers contain a copy
of the input data, so all programs start with the same data in their registers and hence
they all start with the same entropy, the entropy of the inputs = —Y; p;log, (p;)-
Where the subscript i refers to the combined whole memory state (here 64 bits) that
actually occurs in the computer when each program starts, and p; is the fraction
of the fitness cases where i occurs. Le., p; = n;/1201, where n; is the number of
times i occurs when running all 1201 fitness cases. (As mentioned above) since i
refers to 64 bits of state, we use the GNU STL hash table routines to count n; and
thus calculate entropy. Although there are 2% possible states, there are only 1201
fitness cases, so even if each of the fitness cases were unique the entropy could only
be at most log,(1201) = 10.23 bits (Due to repetitions the actual input entropy is

10.22 bits, see Figure[T.T7] page[21])

1.6.2 Generation 500, Entropy Loss

To avoid excessive run time, we switch to analysing in detail only the first 500
generations of our ten runs. In particular we look at the last 500 children created
between generation 499 and 500, by which time they are already quite long and
some of them are high scoring.

Figure[I.13|shows the entropy, of children created by crossover/mutation (i.e. ex-
cluding the 10% which are identical to their parents). To simplify, we only consider
the first of the pair of children created by crossover/mutation, i.e. on average 90% of
250 = 225 for each of our ten runs. Figure [T.15]shows the internal entropy (i.e. the
entropy of the eight registers) of the evolved programs as they execute across all
1201 test cases. Notice at the start of all programs, all 1201 test cases are loaded
into the registers and so their entropy is the same as the entropy of the test cases,
i.e. 10.22 bits. As the programs run they manipulate their registers, calculating new
arithmetic values from the registers and the constants and overwriting registers with
these new values. Notice that the programs are closed systems and so cannot invent
new information as they execute. Thus if information is lost (by overwriting infor-
mation rich registers), then it is lost for the rest of the program’s execution. That
is, entropy falls monotonically. In Figure [I.15]the numbers of instructions from the
start of the program is plotted (on a log scale) horizontally. Figure [I.T3] confirms
entropy always falls monotonically. Notice at the end of a program’s execution, if
it is to predict the sequence well, it will need to have a good approximation of the
sequence in the output register a, so we would expect the entropy of all the registers
to be at least that of the output sequence, 6.67 bits.
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Fig. 1.15 Entropy within 1% child of fit parents at generation 500 during their execution (hori-
zontal axis, log scale). Children who do worse than their 1% parent in purple. Run 6 parents are
maximum length (4 109), they are plotted with dashed lines.

Figure [I.13] splits the programs into those with worse fitness than their parent
(purple) and others (green, 205 of 646 are better than their first parent). Of those
that are the same or better, almost all have a final entropy above or near that of
the output sequence (6.67 bits). Indeed only two have a terminal entropy less than
5.67 bits.

In contrast 98 (of 1610, 6%) of those that are worse, have entropy below 5.67 bits.
Indeed 29 terminate having calculated a constant (0 entropy).

Of the 299 best programs (i.e. with an RMS error < 2.5), 210 terminate with
an entropy between 6.49 and 6.76. Notice when these 210 good programs finish
their seven non-output registers contain almost no additional information. That is,
typically good highly evolved programs succeed by reducing their whole entropy
from that of the input pattern to be close to that of the desired target pattern.

Although Figure [I.I3] hints that low entropy might be used as a way to detect,
and so abort early, children with low residual entropy, here it suggests the saving in
runtime (even if entropy calculation was free) might not exceed 5%.
1994 proposed during fitness evaluation allotting each child a small unit of run time
resources. The execution of those doing poorly would be halted. Whilst those doing
well enough that they might win a tournament, would be given additional computer
time and allowed to continue. Notice Sid Maxwell assumed partial fitness could be
calculated as the program ran (anytime fitness [Teller, 1994]]), whereas here we can
look inside the program as it runs and calculate the entropy remaining within it.
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Rather than seeking a way of using entropy to optimise runtime of an existing
system, a suitable compromise might be to explicitly make entropy part of the fitness
function. For example, we might explicitly say we will measure internal entropy af-
ter 100 instructions and reject any program with entropy below 90% of the target’s
entropy, without running it to completion. Alternatively, and this is more specula-
tive, perhaps there is a way of estimating which mutations, or even crossovers, will
destroy information, without evaluating the whole program. For performance, we
might be prepared to accept that this will be approximate and will introduce noise,
and that this will change in detail the course of individual runs.

1.6.3 Information Loss and Preservation

Figure[I.16|concentrates on a particular fit program produced by crossover and mu-
tation at generation 500 in run ten. Notice the tiny fraction of instructions (shown
with non-vertical arrows) which cause entropy loss and the rapid resynchronisation
of the child’s execution with that of its parents following disruption by four point
mutations and the two crossover boundaries.
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Fig. 1.16 Entropy within 1% example fit program at generation 500 of run 10 during its execution
(horizontal axis, log scale). Crossover fragment (XO) from 2" parent in green. Similarly location
of four point mutations shown with vertical arrows. Numbers following XO and Mutation are the
number of instructions which are disrupted before the contents of all the registers return to their
values in the parents. Left hand side arrows highlight all the instructions which cause information
loss on the 1201 test cases.
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The first instruction c=h—-g calculates the difference between registers h and g
and saves it in register c, destroying the contents of c. In terms of predicting the next
value in the Mackey-Glass sequence, this instruction calculates the signal’s gradient
between 2 and 1 time steps ago and saves it in the register containing data from
32 steps ago. Notice the loss of data from 32 steps ago does not seriously impact
the program’s ability to predict the Mackey-Glass sequence (Figures and [L.4).
Indeed it gives only a small reduction in the entropy in all eight registers. Also we
would expect the gradient to be very useful in predicting the next value. Indeed it is
one of the 34 instructions required to calculate the program’s output (The subtraction
h—g is used 212 times in the program’s 11 326 instructions [Langdon and Banzhaf,
2005]. In a randomly created program of 11326 instructions we would anticipate
h-g occurring 8.8 times.)

The next instruction, e=h-1, also looses entropy but it does not influence the
program’s output.

The third instruction a=a+1 again does not influence the program’s output. Also
by incrementing register a’s value it does not loose information. If we know a has
been incremented, we can recover its previous value by decrementing it. I.e., unusu-
ally for an arithmetic operation, increment is a reversible instruction.

Because of the previous instructions the fourth instruction, h=h+c, also does
not loose information. Remember ¢ = h—g, so now h = 2hg—gg. That is, the new
values of h, ¢ contain no more (or less) information than they did before h was
over written by h+c. In terms of predicting the value at the next time step, it may be
that doubling the weighting of the most recent value (hg 1 time step ago) compared
to that of the previous (gg 2 time steps ago) makes sense. The fourth instruction,
h=h+c, does influence the program’s final output and again is repeated many (291)
times.

As shown in Figure the fifth instruction a=e—1 does reduce entropy (by
overwriting register a) but again it does not influence register a’s final value.

Figure [I.16] shows only nine instructions destroy information and that by in-
struction 45 the program has reduced its internal information to 6.72 bits, which is
almost that of the target sequence (6.67 bits). Amazingly the remaining thousands
of instructions simply move information between the registers and do not loose any
more. Secondly, the child program quickly recovers its parents’ behaviour after both
crossover and multiple mutations.

1.6.4 Information Preservation

We randomly selected ten of the thousands of instructions in the example fit program
shown in Figure[I.16] All ten preserve entropy. Figure[I.18|shows the distribution of
memory values before and after eight of the ten. (Figure[I.20]is typical of the other
two.) For comparison Figure[I.17)shows the initial distribution before any program
runs.
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Fig. 1.17 [Initial distribution of memory values before a program starts. Note 30 of the 1201 test
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Fig. 1.18 Distribution of memory values before and after 8 randomly selected instructions (200,
24717, 3225, 4037, 4509, 4576, 7243 and 8784). Like all but 9 instructions in this program (Fig-
ure[IT6) they do not change entropy (i.e. it remains 6.72 bits). Notice although there are 1201 test
cases, they set only 128 different combined memory values across all eight registers.

The first thing to say is that although these instructions change data values in
the program’s memory, remarkably the distribution of values is identical before and
after these eight instructions (i.e. instructions 200, 2477, 3225, 4037, 4509, 4576,
7243 and 8784, Figure [[.18). Since the distributions are unchanged, of course the
entropy is unchanged.

The key to understanding why irreversible operations can be isentropic and not
loose entropy, is to consider the distribution of memory across the 1201 test cases.
We can use the memory contents to partition the test cases. For example, when the
program starts some test cases have identical inputs and so initially give rise to iden-
tical memory contents (Figure [[.17). That is, the program starts with 1171, rather
than 1201, partitions, If two or more test cases give rise to the same memory con-
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tents, the next instruction will give rise to new contents but (since the programs are
deterministic) the two test cases will both have the same new memory contents and
so remain together in the same partition. In fact they will remain together until the
program terminateﬂ If the partition of all the test cases is the same, the distribution
and so its entropy remains the same. Thus although not reversible the instruction
does not loose entropy.

Of course there are cases where entropy is lost. Suppose two test cases which
have different memory contents (i.e. are in different partitions) execute an instruc-
tion which although it has different inputs gives the same output. This will cause
the partitions holding the two test cases to merge. Thus changing the overall distri-
bution of partitions and reducing its entropyﬂ We can see this by working through
an example. (The next section considers how evolved programs can often
continue to pass information through seemingly arbitrary code changes.)

Consider in detail the first randomly chosen instruction, a=g/42 (Figure [L.19).
It overwrites register a (original values between 0 and 252) with small integer val-
ues generated by dividing the values in register g (values between 24 and 255) by
42 (new values between 0 and 6). If we consider only register a we would expect
integer division by 42 to give a low entropy distribution. Indeed the operation of
replacing a’s current value by values between 0 and 6 (given by g/42) does in-
deed reduce the entropy held by a. However, although it does change locally, it is
important to consider the sparse data pattern held in the rest of the program.

Almost all instructions in the program do not change entropy. If we consider the
program after instruction 45, the internal entropy is always 6.72 bits (Figure
and the contents of the registers partitions the 1201 test cases in the same way.
Although after each instruction typically one register has changed, there is always an
indirect one-to-one mapping via the other seven registers between the new register
values and the old. For example (starting at the left in Figure [1.18] yellow), since
66/42 = 1, the register pattern (a to h) 156,2,136,1,0,92,66,67 (which occurs three
times) becomes 1,2,136,1,0,92,66,67. Thus, the three new values of register a are 1
(which replaces 156). Of course the new pattern also occurs three times. Although
35 of the 42 values that register g could have had, which also set register a to 1 are
present (values g=42..83 horizontal row of x at a (after)=1 in left part Figure(1.19)),
apart from g=66 they occur with different values in the other six registers. That is,
they contribute to different partitions of the memory value distribution. The same
holds across the whole of the 1201 test values. Thus, although values in the memory
(here register a) have changed, the shape of the distribution and hence the entropy
does not change either.

3 In deterministic programs, if different test cases give rise to identical memory, then from that
point on the execution of the test cases will remain synchronised (i.e., with identical memory
contents) and so they will give identical outputs. Thus Figure says we need only run 1171 of
out 1201 test cases. Whilst Figure[Tl’S]says, we need only run this program on 128 test cases.

4 Notice reversible instructions cannot change entropy. Suppose a reversible instruction’s inputs on
two test cases are different (i.e. they belong to different memory partitions). As reversible instruc-
tions are one-to-one, its outputs must also be different. Therefor it cannot cause the partitions to
merge, so their distribution, and hence its entropy, will not change.
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Figure[I.20]shows that the situation is similar for the other two randomly selected
points (877, 6120). Again entropy is still preserved. Figure [I.20]shows the distribu-
tion of memory values before the randomly chosen instruction (877) overwrites a
register and afterwards. (The plot for instruction 6120 is similar.) In both these ex-
amples, the memory values distribution after the instruction is shifted wrt to before.
However, in both Figures and essentially the x-axis is given by the some-
what arbitrary sorting order provided by the hashmap routines. The shifting of the
distribution of memory values along the x-axis makes no difference to its entropy. To
emphasise this Figure [T.20|shows that if we normalise by sorting the before and the
after histograms, they both give the same histogram (plotted in black). Confirming
that although the instruction overwriting a register changes memory values, in this
fit evolved program, it does not in fact change the program’s internal information
contents.

1.6.5 Evolved Code Robustness

Referring back to Figure [I.16] we see each of the genetic changes (two crossover
points and four point mutations) all cause disruption but none of them cause the
program’s internal entropy (6.72 bits) to change. This is somewhat at odds with
our general notion that in human written programs, mutations and other forms of
disruption fail to make an external impact (Failed Disruption Propagation) because
they are followed by entropy loss which dissipates their disruptive effect before it
can reach an output [Petke er al., 2021]l. Nonetheless the following sections discuss
how the evolved code removes the disruption.

The number of test cases where any part of the memory has a disrupted value
falls monotonically as program execution continues past the disruption point (as it
should, not plotted). Figure [I.21] shows disruption in terms of number of registers
and number of test cases. Since a perturbation to one register can spread to more,
the trace need not be monotonic. If the program were fragile and the disruption
large, the disruption could spread to include all the registers and never die away (as
happened sometimes to other evolved but unfit programs). Figure is plotted
on a log scale to test the idea that the fall in this measure of disruption might be
exponential (a straight line on log scale), or at least approximately exponential.

In two cases (4 and x) disruption is lost immediately. In one mutation (black)
and the first crossover (XO 1), the fall might be (generously) regarded as a noisy
exponential. In the other cases, there are multiple large rises and falls and so a simple
exponential seems a poor model of the actual behaviour.
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(purple) and point mutation sites versus number of unperturbed program instructions before dis-
ruption falls to zero. 1% example fit program at generation 500 of run 10. Vertical axis on log
scale.

1.6.5.1 1% Crossover point 1876, Disruption length 52

The child is first created by crossover and then subjected to four distinct point muta-
tions, It can be thought of as a copy of its first parent with a code section (length 160)
removed and replaced by randomly selected but fit evolved code from its second par-
ent (length 2648), increasing its size by 2488 instructions. Naturally the introduced
code disrupts its operation but as Figure[I.16|shows, this does not change its internal
entropy.

At the start of the crossover section (purple XO 1 line in Figure[T.2T) all 1201 test
cases are disrupted (on average 5.98 registers per test case). It appears on at least
one test case all registers, except h, initially contain different values in the child
than they had when the code was executed in the second parent. (Remember for
predicting the next value, the previous value, initially held in register h, is perhaps
the most useful data item. So it makes sense for evolution to protect h.) It seems
reasonable to assume that each of the registers with a different value would have
to be overwritten at least once before their contents resynchronise. During the 52
instructions where the contents differ registers a and b are written to 21 and 8§ times
but d and £ only 4, ¢ 3 and g only 2, both of which the new value of g does not
depend on the other registers. Indeed the instruction g=e—1 which synchronised
the child with execution in its second parent is the first time register g is overwritten
with a value that depends on the others.
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1.6.5.2 Mutation 3009, Disruption length 1

The point mutation of instruction 3009 (+ in Figure [I.2T)) replaces a=h-1 (in the
crossover region taken from the 2" parent) with a=b-1, typically changing the
value in register a. However the next instruction (a=f—-1) also sets register a so
overwriting the mutated value in a. Thus the disruption lasts only one instruction.

1.6.5.3 Mutation 4271, Disruption length 79

The second point mutation replaces an addition with a protected division. L.e. c=h+c
becomes c=h/c (green line in Figure[I.21)). This changes the contents of register c
on all but one test case. The disruption remains in register c until 22 instructions
later when e=c+b spreads it to register e. However the disruption to e is short
lived, as two instructions later it is overwritten by e=a+1, so restoring its unmutated
value. But then c’s disruption is spread to d (by d=h+c) and then in turn to £ (by
f=d+55). Shortly later d is restored to its unmutated value (by d=b-1) and then
reinfected three instructions later (by d=c-105). The disruption is spread further
in the next instruction (e=c-b) reaching a new peak five instruction later to include
also b (by b=d/g). However the next instruction (c=h+7) resets c, followed by
resetting £ (f=h-110). From this point, disruption climbs steadily (via a=b/7,
f=d«x55, e=dx74 and g=e-1). Until at the peak, all but two registers (h and c)
have been influenced by the mutation. From the peak the influence of the mutation
falls steadily to nothing (via b=h-1, a=h-116, e=h/1, d=b+88, f=d+55 and
g=e-1).

It is tempting to think of this as a random walk or a Gambler’s ruin [Langdon,
2002] but remember these are not random instructions, they have been honed by
evolution for 500 generations. Also remember none of them loose information and
(as with all the instructions in these section) entropy is preserved throughout (Fig-

ure [I.T6).

1.6.5.4 2"¢ Crossover point 4524, Disruption length 67

This section shows that the disruption caused by swapping to code from the other
parent (Section[1.6.5.1)) is similar to when (at instruction 4524) execution returns to
the first parent.

Again all 1201 test cases are disrupted, with on average one fewer registers
(~5.00) disrupted (purple line starting at 6002 on left hand side of Figure [T.21).
Again it seems register h is not disrupted. And this time also the output register a
also takes the same values in the child as it took in the first parent. So, it appears,
that transition of execution across the junction between second parent and first par-
ent code does not disturb these two registers.

As expected, the distribution of registers over write is similar to that at the start of
the crossover fragment. Again it seems reasonable to assume the disruption contin-
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ues until all the initially different registers are overwritten at least once (or perhaps
twice). This time it takes slightly longer (67 instructions rather than 52). The instruc-
tion which finally removes all the disruption is £=h/1 which sets £ to h. Notice,
for each test case, h has the same value in both parents.

1.6.5.5 Mutation 9212, Disruption length 1

This point mutation replaces a=g/g with a=a/g typically changing the value
in register a (x in Figure [I.2ZT). However, like the point mutation at 3009 (Sec-
tion [1.6.5.2)), the next instruction also sets register a, meaning the disruption lasts
only one instruction.

1.6.5.6 Mutation 11236, Disruption length 9

Mutation 11236 replaces e=d/74 by d=d/74 (black line in Figure [I.2). It is
different from the others we have seen because it changes the output register. There-
fore it impacts the new output register (d) and no longer updates the old output
register (e). However e is reset three instructions later (by e=h/1). Similarly the
new value of d remains in it until nine instructions later when it is overwritten
(by d=b-1) which resets d to its unmutated value. Hence although the mutation
changes memory on all 1201 test cases, its influences only lasts 9 instructions.

1.6.6 Rate of Improving Evolved Code Slows with Program Length

In the previous sections we have shown that programs evolve long robust tails. We
suggest that regions of the program with high information (high entropy), which are
near the program’s start, will be more fragile and so will be liable both to disruption
and improvement. Figure[I.22]concentrates upon our ten runs at generation 500 and
shows all but 15 of 1074 programs were disrupted when the first genetic change
was in a region where their parent’s entropy was more than 8 bits. (I.e., almost all
children had a different fitness to that of the parent they inherit their first instruction
from, if some of the genetic differences lay in information rich code.) In contrast
when all the genetic changes were in regions with entropy below 8 bits (typically
6.8 or less), more than a 36% (427/1183) of children had the same fitness as their
parent.

Notice this provides a plausible argument to explain why the rate of innovation
falls with program length (Figure [I.TT). If we assume for each run the populations
converge so that near the start of each program there is a fragile high entropy region
of more or less fixed size (Figure [I.I5). Then the chance of either mutations or
crossover points landing in it falls in proportion to how much of the whole program
it occupies. If we assume only changes to the information rich code lead to fitness
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Fig. 1.22 Impact of crossover/mutation on 1% child of fit parents at generation 500. + child’s
fitness is the same as 1% parent. Better or worse both plotted with dot. Vertical axis shows highest
entropy within parent at the crossover and mutations points used to create the child. Horizontal
axis 2257 children from ten runs sorted by decreasing entropy (y-axis).

improvements, then this leads immediately to Equation [I.1] (page [I2)). That is, the
rate of innovation falls inversely with increasing program length.

This suggests prolonged evolution of linear GP is both like tree GP and different.
It is like tree GP, in that the rate of improvements also falls in proportion to pro-
grams size. However different in that in simple tree GP, populations of evolved trees
converge around the trees root nodes [Langdon, 2022a]. Note that the sensitive part
of tree genetic programming is near the program’s output whereas in linear GP its
near the programs’s inputs.

1.7 Conclusions

Even with modest hardware, long term evolution experiments (LTEE) are possible
with a simple linear genetic programming system (GPengine) in a few weeks, rather
than 38 years. Nevertheless bloated populations of long programs, like those of
deep trees, suffer from convergence and become very robust, causing the rate of
innovation to reduce in proportion to the programs’ increase in size.

Information theoretic analysis shows to predict the chaotic time series, fit evolved
programs rapidly loose the information given by their inputs in order to approach
that of the desired output. However once the entropy of the target sequence has
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been (approximately) reached, they become enormously stable, retaining exactly
the same entropy despite executing thousands of irreversible instructions.

Detailed analysis shows that such programs are often resilient to both crossover
and mutation. Typically fit programs restore their whole internal state (and therefore
their final outputs) by executing no more than a few dozen instructions after the
disruption caused by the mutation or at either of the transition points between code
inherited from the child’s two parents.

Potentially modest runtime savings could be obtained by cutting short the exe-
cution of programs which have lost too much entropy, since we know before they
terminate that they cannot possibly approximate their target well and so must have
a poor fitness. Also information theory using internal entropy (here obtained at run
time, but potentially estimated via program analysis) could be used to predict pro-
gram performance.

The intention is to continue to enhance GPengine and use it as a framework
to support analyse of open-ended co-evolution of multiple data sharing learn-
ing programs. So far we have used our experience with AVX vector instruc-
tions [Langdon, 2020a; [Langdon, 2022¢] and pthreads on a multi-core computer
to speed up GPengine’s interpreter. Based on previous experience we hope that
use of GPUs [Langdon and Banzhaf, 2008; [Langdon, 2010; [Langdon et al., 2014;
Langdon er al., 2017|] will also greatly increase performance, allowing continual
learning theory and experimentation on relatively modest hardware.

Code based on Peter Nordin’s GPengine and the discretised Mackey-Glass
dataset are available vialhttps://github.com/wblangdon/GPenginel
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