
On the Use of Evaluation Measures for Defect Prediction Studies
Rebecca Moussa

University College London
London, United Kingdom

rebecca.moussa.18@ucl.ac.uk

Federica Sarro
University College London
London, United Kingdom

f.sarro@ucl.ac.uk

ABSTRACT
Software defect prediction research has adopted various evaluation
measures to assess the performance of prediction models. In this
paper, we further stress on the importance of the choice of appropri-
ate measures in order to correctly assess strengths and weaknesses
of a given defect prediction model, especially given that most of
the defect prediction tasks suffer from data imbalance.

Investigating 111 previous studies published between 2010 and
2020, we found out that over a half either use only one evaluation
measure, which alone cannot express all the characteristics of model
performance in presence of imbalanced data, or a set of binary
measures which are prone to be biased when used to assess models
especially when trained with imbalanced data.

We also unveil the magnitude of the impact of assessing popular
defect prediction models with several evaluation measures based,
for the first time, on both statistical significance test and effect size
analyses. Our results reveal that the evaluation measures produce a
different ranking of the classification models in 82% and 85% of the
cases studied according to the Wilcoxon statistical significance test
and 𝐴12 effect size, respectively. Further, we observe a very high
rank disruption (between 64% to 92% on average) for each of the
measures investigated. This signifies that, in the majority of the
cases, a prediction technique that would be believed to be better
than others when using a given evaluation measure becomes worse
when using a different one.

We conclude by providing some recommendations for the se-
lection of appropriate evaluation measures based on factors which
are specific to the problem at hand such as the class distribution
of the training data, the way in which the model has been built
and will be used. Moreover, we recommend to include in the set of
evaluation measures, at least one able to capture the full picture of
the confusion matrix, such as MCC. This will enable researchers to
assess whether proposals made in previous work can be applied for
purposes different than the ones they were originally intended for.
Besides, we recommend to report, whenever possible, the raw con-
fusion matrix to allow other researchers to compute any measure of
interest thereby making it feasible to drawmeaningful observations
across different studies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534405

CCS CONCEPTS
• Software and its engineering→ Software defect analysis;

KEYWORDS
Software Defect Prediction, Evaluation Measures

ACM Reference Format:
Rebecca Moussa and Federica Sarro. 2022. On the Use of Evaluation Mea-
sures for Defect Prediction Studies. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3533767.3534405

1 INTRODUCTION
Software bugs are costly. Themost common cost of bugs is poor user
experience, which causes software abandonment. For example, one
of the most prominent reasons mobile users delete an application,
often after a single use, is due to the app crashing [28]. In the worst-
case scenario, their cost can be life-threatening as in the case of
the IT glitch of the UK National Health Service which put 10,000
patients at risk of being given the wrong medication in 2018 [8].
The earlier a bug is found and fixed, the less it costs.

Software defect prediction research aims to support engineers
in identifying defective components, early in the development pro-
cess. An ideal prediction model is the one able to unveil as many
defects as possible without raising false alarms (i.e., flagging clean
components as defective).

However, as shown by Zhang et al. [56], achieving this in practise
is challenging as optimising for one aspect often compromises the
other (especially for problems such as the ones with large negative
vs. positive ratios). On the other hand, defect prediction models
with high detect capabilities and high false alarm, or vice-versa
models with low detective capabilities but high precision, can still
considered effective depending on the business context [32, 33]. For
example, a defect prediction model for safety critical software can
be considered effective if it exhibits a high probability of detecting
defects, even if it does so at the cost of generating a large number
of false alarms. Similarly, a model that sacrifices certain detective
capabilities in order to achieve a better precision can be desirable
when there is, for example, a high cost in checking false alarms.

The use of appropriate evaluation measures guides practitioners
and researchers to understand whether a given prediction model is
fit for their purposes [17].

However, previous work has raised alarms about the way re-
searchers have employed these measures to assess the effectiveness
of the prediction models proposed in their work, especially in the
presence of imbalanced data [4, 6, 12, 17, 20, 48]. The importance
of adopting suitable measures has been often overlooked, thereby
leading to discordant empirical results (i.e., conclusion instability)
and hindering meta-analysis across different studies [9, 34, 47].

https://doi.org/10.1145/3533767.3534405
https://doi.org/10.1145/3533767.3534405
https://doi.org/10.1145/3533767.3534405

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

In this paper we invite the community to reflect better on the se-
lection of appropriate evaluation measures to support the scientific
conclusions that are drawn on the effectiveness of defect prediction
models.

To this end, we first analyse how researchers have selected and
used these measures over the last decade by examining 111 defect
prediction studies published between 2010 and 2020. We find that
59% of these studies do not properly motivate the use of their
evaluation measures depending on the business context, and less
than half acknowledge that their findingsmight change if the results
are assessed by using a different evaluation measure. Furthermore,
we find that, despite the warnings raised in previous studies [4,
17, 24], the use of some problematic measures has become more
frequent with time. On the other hand, no growth in the adoption
of more robust measures has been seen.

We also unveil and quantify the impact using different measures
might have in practice by carrying out a comprehensive empirical
study. Specifically, we investigate the use of six of the most widely
used evaluation measures in literature to assess and compare the
performance of seven popular defect prediction models in predict-
ing defects for 15 different real-world software systems (for total
of 24 datasets), under three different prediction scenario.

We find that there is no case where all the measures agree on
a same ranking of prediction models. Moreover, in 118 (83%) and
in 122 (85%) out of the 144 cases analysed, the ranking produced
by a given evaluation measure varies from the rankings produced
by all the other evaluation measures, according to the Wilcoxon
statistical significance test and the 𝐴12 the effect size measure,
respectively. Besides, we find that assessing model performance
based on a given measure would have changed the rank of a specific
technique between 61% and 90% of the time, on average, depending
on the measure used.

Overall, these results highlight the dramatic impact on the abil-
ity to draw meaningful conclusions across studies using different
measures often not relevant or suitable to the business context.

We encourage researchers to select evaluation measures that
fit the study’s specific aim, model and data; as well as to include
a more comprehensive and balanced measure to give an overall
view of the performance of the proposed approach. This enables
researchers and practitioners to assess and decide whether propos-
als made in previous work can be applied for purposes different
than the ones they were originally intended for. The rest of the
paper is organised as follows. We first provide the reader with some
background on previous work discussing the matters arising from
the use of different evaluation measures in defect prediction studies
(Section 2), and with a comprehensive overview of the different
metrics used in the literature (Section 3). The core contributions of
our study are presented in Sections 4 to 6. In Section 4 we report our
findings on the use of evaluation measures in 111 defect prediction
studies published over the last decade. Whereas in Section 5 we
describe the design of the empirical study we conducted and discuss
its results in Section 6. Section 7 discusses possible threats to the
validity of our study. Section 8 concludes the paper and presents
some recommendation for the selection of evaluation measures in
future defect prediction studies.

2 RELATEDWORK
A few studies have highlighted possible differences resulting from
the use of different evaluation measures, however no previous study
has provided empirical evidence on the magnitude of such differ-
ences nor its statistical significance, and the effect it can potentially
have on findings across various studies. In the following, we discuss
these studies and highlight further differences with ours.

In 2008, Jiang et al. [24] provided a review of evaluation mea-
sures for defect prediction commonly used at that time, as well as an
initial comparison of their use on the NASA data. They highlighted
possible threats coming from the use of certain/different measures
and suggested that evaluation measures should be carefully chosen
and interpreted based on the specific needs of the project. Twelve
years later, our analysis of the work published between 2010 and
2020 reveals that the threat has remained un-tackled by the com-
munity.

Moreover, our empirical study includes measures proposed more
recently, as well as a more diverse and recent set of data and for the
first time, the comparison is entirely based on statistical significant
tests and the effect size measure.

Subsequently, Jingxiu and Shepperd [54] performed a meta-
analysis of eight papers on defect prediction in order to understand
the differences resulting from the use of F-measure as opposed to
MCC. They illustrated potential biases by using confusion matrices
that portray different scenarios and found that the use of F-measure
is problematic. However they did not quantify the differences result-
ing from the comparison, in fact as they state, their study "captures
a change in direction of the effect, it does not, however, capture the
magnitude of the effect"[54]). In our study, we specifically study the
magnitude of the effect of using six different evaluation measures
(including F-measure and MCC) based on both statistical and effect
size analyses. This analysis is crucial to provide solid empirical evi-
dence on whether the use of a measure over another significantly
changes the way model performance is interpreted with respect to
the business needs.

Other studies not directly targeting this issue yet highlighting
that the problem exists are those by Arisholm et al. [4], Xuan et
al. [51], and Hall et al. [17]. Arisholm et al. [4] investigated and
compared the use of different classifiers and features to predict cross-
release defects of an industrial legacy system. To this end, they used
different evaluation measures (including Accuracy, Precision, Recall
and ROC), and observed that what is considered the best model
depends on the criteria that are used to evaluate and compare the
models.

Xuan et al. [51] came to a similar conclusion by investigating the
performance of several classifiers for within-project defect predic-
tion in 10 open-source software systems, based on a large number of
evaluation measures in order to find the best performing classifier.
The comprehensive literature survey by Hall et al. [17] reviewed
defect prediction studies published up to 2010. Despite the fact
that the primary goal of their survey was not to investigate bias
resulting from the use of different evaluation measures, they do
observe that this is an issue and provide some guidelines to prevent
it. As this study was published in 2012, one would have expected
subsequent research to adopt/follow these guidelines, however, our

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

analysis of the work published in the last decade shows that this
has not been the case as we further articulate in Section 4.

3 A HITCHHIKER’S GUIDE TO DEFECT
PREDICTION EVALUATION MEASURES

In this section we describe the most common binary classification
evaluation measures, highlighting strengths and weaknesses of
their use for defect prediction.

The formulae of these measures are reported in Table 1 and
they originate from the confusion matrix (see Table 2). This matrix
describes four types of instances: TP, defective modules correctly
classified as defective; FP, non-defective modules wrongly clas-
sified as defective; FN, defective modules wrongly classified as
non-defective; TN, non-defective modules correctly classified as
non-defective.

The Accuracy measure has been one of the first measures used
to assess defect prediction models performance, but it is nowadays
widely recognised that this is a biased measure for defect prediction
models and thus should not be used. The reason is that this measure
is very sensitive to class imbalance and defect prediction data is
very often imbalanced [24]. A simple trick to maximize accuracy
when data is imbalanced is to always predict the instances as non-
defective.

Subsequently, Precision and Recall and their harmonic mean,
the F-measure (F1), have been adopted in numerous studies. These
measures consider the positive (i.e., defective) class as the only class
of interest. Similarly, False Positive Rate (FPR), which is also known
as Type I Error Rate, is also a single-focus measure and, as such, it
explains only one aspect of a classifier.

While, this can be acceptable in some domains, like information
retrieval, where the number of irrelevant documents not correctly
retrieved is hard to quantify (i.e., it is essentially unbounded), it
would not be acceptable in the medical domain, for example, where
classifying a sick person as healthy is just as important as classi-
fying a healthy person as sick. The latter can also be the case for
defect prediction since the correct identification of negative classes
(non-defective) becomes important when the cost of inspecting the
components incorrectly classified as defective (i.e., false alarms) is
high. These examples suggest that the choice of assessing a model
with Precision, Recall, F1 or (FPR) might vary according to the
business needs.

The knowledge of the business domain can indeed guide in
choosing the most appropriate way to evaluate whether a given
predictionmodel is effective for the problem at hand. In other words,
the relative importance assigned to precision and recall is an aspect
of the problem. Weighted measure can be used to control such
a delicate balance. An example is the F𝛽 measure, which can be
used to control the balance of precision and recall by setting a 𝛽
coefficient: 𝐹𝛽 = ((1 + 𝛽2) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
𝑅𝑒𝑐𝑎𝑙𝑙). However, determining meaningful weights is not trivial in
practice [24].

Using only measures that give importance to only one class,
might lead to biased evaluation when assessing prediction models
in presence of highly imbalanced data [32]. In such a context, a
good classifier is expected to produce high accuracy in detecting
the defect class without significantly degrading the accuracy of

Evaluation Measure Definition

AUC
Area under the Receiver

Operating Characteristic Curve

Recall (PD) 𝑇𝑃
𝑇𝑃+𝐹𝑁

Precision 𝑇𝑃
𝑇𝑃+𝐹𝑃

F1 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑃𝐷
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑃𝐷

FPR (a.k.a PF) 𝐹𝑃
𝐹𝑃+𝑇𝑁

G-measure 2×𝑃𝐷×(1−𝑃𝐹)
𝑃𝐷+(1−𝑃𝐹)

Balance 1 −
√
(0−𝐹𝑃𝑅)2+(1−𝑃𝐷)2√

2

MCC
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁√

(𝑇𝑃+𝐹𝑃) (𝑇𝑃+𝐹𝑁) (𝑇𝑁+𝐹𝑃) (𝑇𝑁+𝐹𝑁)

Accuracy 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

G-mean
√
PD × (1 − FPR)

Table 1: The definition of the measures.

detecting the non-defect class [20]. In other words, probability of
detection (or Recall) and probability of false alarm (or FPR) are
important performance metrics in the class imbalance context, and
it is usually recommended the use of balanced measures, such as
G-measure and G-mean2, to properly assess model’s performance.
These measures give equal importance to the positive and the neg-
ative class, i.e., they are formulated based taking into account both
probability of detection and probability of false alarm, and thereby
show how much balance between two metrics is achieved overall.

Similarly, the distance to heaven (d2h) measure (a.k.a. Balance
= 1 - d2h) computes the distance of FPR and Recall to the ideal
(heaven) values of FPR=0 and Recall=1. Therefore, the smaller d2h
(higher Balance), the better the performance of the classifier. Based
on the definition of d2h, it is clear that a high Recall leads to a
lower d2h; whereas a high FPR results in a higher d2h.

Ranking measures have also been used to assess prediction mod-
els. The most popular one is the Area Under the ROC1 Curve (AUC),
which can be interpreted as the probability that a model ranks a
random positive observation higher than a random negative obser-
vation. The AUC is a reliable heuristic to evaluate and compare the
overall performance of classification models as it is scale-invariant
(i.e., it measures how well predictions are ranked, rather than their
1The Receiver Operating Characteristic (ROC) is a graph showingmodel’s performance
in terms of True Positive Rate and False Positive Rate at all classification thresholds.

Predicted Value
Actual Value Defective Non-Defective
Defective True Positive (TP) False Negative (FN)
Non-Defective False Positive (FP) True Negative (TN)

Table 2: Confusion Matrix for Binary Classification.

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

absolute values) and threshold-invariant (i.e., it measures the qual-
ity of the model’s predictions irrespective of the exact classification
threshold chosen). However, it is not applicable in practice since a
deployed classifier must have a particular classification threshold
[18]. Thus, unless a classifier outperforms another for all possible
threshold values, AUC cannot be used to compare and rank classifiers
[36, 45].

A different approach based on statistics, is the phi-coefficient (𝜙)
[13], also known as Matthews Correlation Coefficient (MCC) when
applied to classifiers [31]. This approach considers the true class
and the predicted class as two (binary) variables, and computes
their correlation coefficient, in a similar way to the computation of
the correlation coefficient between any two variables. The higher
the correlation between true and predicted values, the better the
prediction. MCC has the nice property of being perfectly symmetric,
i.e., no class is more important than the other, and switching the
positive and negative class yields to a same MCC value. Since MCC
takes into account all four values in the confusion matrix, a coeffi-
cient close to 1 means that both the positive and negative classes
are predicted accurately, even when the data is imbalanced.

The use of MCC allows to capture overall model performance, and
thus it is often recommended for evaluating the performance of
classification models across different tasks or in the presence of
imbalanced data. Previous studies have argued that using MCC is
more appropriate than using F1, (or AUC), alone for defect prediction
studies [46, 54], yet our survey, (described in Section 4), shows that
MCC has not been widely adopted yet (see Figure 2). A detailed
comparison of MCC, F1 and AUC can be found elsewhere [12, 15, 46,
54].

The above measures are easy to compute, and this has generated
the use of a variety of different measures over the years, even if they
were not always related to the specific model usage requirements
as we further articulate in the next section.

4 INVESTIGATING THE USE OF EVALUATION
MEASURES IN THE DEFECT PREDICTION
LITERATURE

As discussed in Section 2, the use of different evaluation measures
has raised a concern within the defect prediction community that
dates back to over 10 years ago [24], but what has changed since?
and how have we handled this crucial aspect in our studies? In the
following we aim at answering these questions by reviewing prior
studies published over the last decade.

4.1 Search Methodology
We used Scopus to search for research articles published between
2010 and 2020 (June 2nd) by using the query: ("Defect" || "Fault" ||
"Bug") & ("Prediction" || "Prone"). This search resulted in 242 papers.
Among these, we manually filter out irrelevant publications by
following the three step process adopted in previous surveys [22, 30]
as described below:

(1) Title: First, we exclude all publications whose title clearly
does not match our inclusion criteria;

(2) Abstract: Second, we examine the abstract of every remain-
ing publications. Publications whose abstract does not meet
our inclusion criteria are excluded at this step;

(3) Body: We then read, in full, all publications that had passed
the previous two steps. Manuscripts are excluded if their
content does not satisfy the inclusion criteria or contribute
to this survey.

To ensure that the publications included in this survey are rele-
vant to the context of binary defect prediction, at each of the above
steps we apply the following inclusion criteria:

- The publication should investigate an experimental study of
software defect prediction models, metrics or data.

- The publication predicts a dichotomous outcome (i.e., defect
or not defect-prone).

Based on the above three-stage process and inclusion criteria,
we iteratively reduce the amount of publications obtained from
the Scopus search, until we end up with a set of 111 publications
investigated herein. For the sake of space, we provide the full list
of papers in our online appendix [1].

We then manually examine the 111 papers to extract relevant
information. In particular, in order to identify which evaluation
measures were used in each study, and the rational for them, we
analyze the section discussing the evaluation measure/procedure.

We consider a study to have explained its use of measures when it
provides a clear reasoning for the choice of measures as opposed to
others, or when otherwise, the reason is obvious from the research
context.

Finally, we proceed by checking whether the study mention any
challenge arising from the choice of the evaluation measure(s), and
hence whether any mitigation was put in place. We consider a study
to have acknowledged and mitigated the importance of choosing
proper evaluation measures if it discusses, for example, limitations
of the used measure, the existence of measures other than the ones
used, the fact that different measures might yield different results,
the necessity to complement the used measures with additional
ones, etc.

4.2 Results
We report the number of papers that use a specific measure in Table
3 as well as the number of studies that use one or multiple measures
in Figure 1, and the frequency of measure use over time in Figure 2.

Figure 1: Number of measures used in prior studies.

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

Evaluation Measure No. of Studies (%)
AUC 60 (54%)
F1 59 (53%)
Recall (PD) 57 (51%)
Precision 43 (39%)
FPR (a.k.a. PF) 19 (17%)
G-measure 12 (11%)
Balance 10 (9%)
MCC 13 (12%)
Accuracy 12 (11%)
G-mean 9 (8%)
Others 10 (9%)

Table 3: Number of studies using a given measure.

We can observe, from Table 3, that more than nine different
evaluation measures have been used to assess defect prediction
models over the past 10 years.

The most used measures are AUC and F1 (used in 60% and 59% of
papers, respectively), followed by Recall and Precision (used in
57% and 43% of papers, respectively). As explained in Section 3, mea-
sures such as AUC and F1 do not portray the full confusion-matrix
and can lead to biased results when used for assessing classifier
performance on unbalanced datasets, which is often the case for
defect prediction data. A variety of symmetric and robust measures
exist [45], however we found (see Table 3) that they have been
adopted by much fewer studies (e.g., MCC 12%, G-measure 11%,
G-mean 8%, Balance 9%).

Moreover, as shown in Figure 1, 30% of the papers analysed
use only one measure to evaluate defect prediction models, among
which AUC is the most common (53%), followed by F1 (33%).

Using only one measure might affect the validity of these studies
especially if such measure is among those that have been shown
to be problematic (see Section 3). This is the case of AUC and F1,
which might be biased when imbalanced data is used, as further
explained in Section 3.

The threat might still be present in past studies that use more
than one measure. Indeed, among the 14 studies (13%) which use
two measures, four of them (29%) use AUC and F1 together; and
among the 31 papers (28%) using three measures, 13 of them (42%)
use F1 and its constituent components (i.e., Recall and Precision).
Furthermore, when analysing the studies that use four measures, 10
out of 24 (42%) use a set that may still be biased as it includes a subset
of Accuracy, F1, Precision, Recall, and AUC. This is somehow
worrying since these measures are known to be problematic [14, 18,
24, 41], as explained in Section 3. Their use should be complemented
with the use of balanced measures such as G-measure or MCC.

Together, these results highlight that 56 out of the 111 papers
examined (51%) might have drawn different conclusions had they
considered a more comprehensive set of measures.

Further, when observing the use of the evaluation measures
over the years, presented in Figure 2, results show that despite the
warnings raised in previous studies about the use of AUC, F1, and
its constituents [14, 18, 24, 41], their use has actually become more
frequent with time. On the other hand, we do not observe as big
of a growth in the adoption of more robust measures advocated in

Figure 2: The frequency of measure use for 2010-2020.

previous work [45]. For example, only one study has used MCC
before 2016 and it has then been used at an average of less than
three times per year since.
Despite the warnings raised in previous work [4, 12, 17, 48], the
results of our literature review reveal that the choice of evaluation
measures is still a major concern in the community and that it has
only been partially tackled so far. Over half of the studies (59%) do
not justify the use of the measures, based on the aim of the study,
neither the models investigated or the data at hand. 52% of studies
also do not acknowledge that using different measures could lead
to different results. Among those studies which acknowledge the
threat (48%), 41 put in place some form of mitigation. However, only
15 out of the 41 studies recommend the use of unbiased measures,
while the majority propose mitigation which might be perceived
as unsatisfactory since they recommend, for example, that future
work should investigate the use of other measures, or the use of
measures widely seen in previous work, or the use of threshold
independent measures, which has been criticised for not being
applicable in practice since to deploy a classifier one must use a
specific classification threshold [18, 45] as we explain in Section 3.

5 EMPIRICAL STUDY DESIGN
In this section, we present a thorough empirical study based on
both, statistical tests and effect size to investigate the extent to
which the conclusion of a study comparing the performance of
defect prediction techniques may change based on the evaluation
measure used to make the comparison.

This study investigates two research questions (RQs) and in-
volves the use of seven classification techniques, 15 publicly avail-
able datasets, and six evaluation measures validated on three differ-
ent defect prediction scenarios, as detailed in the following subsec-
tions.

5.1 Research Questions
We pose two research questions investigating the use of the eval-
uation measures most used in prior studies (i.e., AUC, Balance, F1,

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

G-measure, MCC, and FPR according to the literature 2 to measure
the performance of seven different prediction techniques, described
in Section 5.5.

Our first research question investigates, precisely, whether each
of the six evaluation measures would rank the seven techniques in
the same order. This is crucial because if these measures turn out
to yield different rankings, then the conclusions made by previous
studies using certain measures would change at a significant level.
Therefore, we first ask:
RQ1. Ranking Disagreement: How often would the ranking of
techniques produced by a given measure differ from the ranking
produced by another measure?

To address RQ1, we first produce a ranking of the prediction
techniques per measure according to the Wilcoxon Signed-Rank
test and the Vargha and Delaney’s 𝐴12 non-parametric effect size
[3]. Then, based on these rankings, we compute the ranking dis-
agreement for each measure by counting the number of times it
produce a same ranking with respect to using other measures.

The ranking disagreement tells us the extent to which a measure
agrees with others. If the rank disagreement of a given measure
is high, this would suggest that there is a non-trivial error when
using different measures.

Our second research question analyses this error at a finer grain
to gather further insights on the extent to which these rankings
differ:

RQ2. RankDisruption:What is the percentage of cases in which
a rank of a specific technique, based on a given measure, changes
when assessed using the other measures?

To assess the rank disruption of a ranking provided by a given
evaluation measure, we assess the rank change, i.e., a prediction
technique that would be believed to be better than others when
using a given evaluation measure becomes worse when using a
different measure. If the rank disruption proves to be high, some
scientific conclusions drawn in previous studies could be reversed
when accounting for the threat to validity posed by the choice of
the evaluation measure.

We explain in details the way we compute the rank disagreement
and rank disruption in Section 5.2.

5.2 Ranking Disagreement and Rank
Disruption

To compute the ranking disagreement and the rank disruption, we
run the prediction models on each dataset and evaluate their perfor-
mance with each of the six evaluation measures under investigation.
Then we apply the Wilcoxon test and the Vargha and Delaney’s
𝐴12 non-parametric effect size, and rank the prediction models, per
measure, based on the results of these analyses. Once the rankings
are obtained we compute:

• the ranking disagreement of a given measure by analysing
the number of times its ranking varies from the rankings pro-
duced by each of the other evaluation measures per dataset.
The ranking disagreement of a given measure varies from 0

2We do not want to inflate our results, therefore we do not include Accuracy, Recall
and Precision given they would generate opposing rankings due to the way they are
defined.

M1 M2 M3
Rank 1 𝑇𝑎 𝑇𝑐 𝑇𝑐
Rank 2 𝑇𝑏 , 𝑇𝑐 𝑇𝑎 𝑇𝑏
Rank 3 - 𝑇𝑏 𝑇𝑎

Table 4: An example of the procedure used to compute the
ranking disagreement and the rank disruption.

(all measures agree on the same ranking) to 1 (all measures
disagree, thus each ranking is unique).

• the rank disruption of a given measure by counting the num-
ber of times the rank of a specific technique changes when
assessed according to each of the other measures.

In the following, we explain in detail how we computed the
rankings based on the Wilcoxon test and 𝐴12 effect size.

Given an evaluation measure, we perform the Wilcoxon Signed-
Rank test (𝛼 < 0.05) on the results obtained by each pair of tech-
niques by testing the null hypothesis: “The results achieved by
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝑥 in terms of a given evaluation measure 𝑚 are
worse than those achieved by 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙𝑦". We, then, sum-
marise the results of this test by using the following win-tie-loss
procedure [42]:

We count the number of times a prediction model scored a
p–value<0.05 (win), p–value>0.95 (loss), and 0.05≤ p–value ≥0.95
(tie). Finally, we rank the techniques based on the highest number
of wins, where any ties are broken based on the number of losses.
For example, based on the win-tie-loss procedure, Table 4 shows
that according to measure M1, technique Ta is the best performing
one since it achieves the highest number of wins when compared to
techniques Tb and Tc. Whereas, technique Tc is said to be the best
performing one according to measures M2 and M3 given that this
technique obtains the highest number of wins. However, all three
measures (i.e., M1, M2 and M3) disagree on the second and third
rank. We also produce a ranking of the prediction models based
on the Vargha and Delaney’s 𝐴12 non-parametric effect size [3] to
validate whether the differences highlighted by Wilcoxon test are
worthy of interest.

Similarly to the procedure described above, we compute the
𝐴12 effect size for each pair of techniques resulting in a statisti-
cally significant difference according to the Wilcoxon Signed-Rank
test (𝛼 < 0.05). The 𝐴12 statistic measures the probability that
an algorithm 𝐴 yields better values for a given performance mea-
sure𝑀 than that of another algorithm 𝐵. If the two algorithms are
equivalent, then 𝐴12 = 0.5. Given the first algorithm performing
better than the second, 𝐴12 is considered small for 0.6 ≤ 𝐴12 < 0.7,
medium for 0.7 < 𝐴12 < 0.8, and large for𝐴12 ≥ 0.8, although these
thresholds are somewhat arbitrary [43]. Based on these thresholds,
we count the number of small, medium and large effect sizes ob-
tained by each prediction model, and rank the techniques based on
the highest number of large effect size, where ties are broken based
on the number of medium and small effect sizes in this order.

Following the above procedure, for each dataset we obtain a
set of six rankings (i.e., one per evaluation measure) based on the
Wilcoxon test and a set of six rankings based on the 𝐴12. For each
of these sets, we manually inspect the rankings produced by each

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

of the measures to compute the ranking disagreement and rank
disruption, as explained above.

5.3 Datasets
To answer RQ1, we carry out a thorough empirical study using a
total of 15 datasets available from two public repositories: NASA
[40] and Realistic [55]. The former has been made publicly available
in the early 2000 and contains software defect data about industrial
NASA software systems, which have been widely used by the defect
prediction community since. The latter was made publicly available
in 2019 and consists of open-source projects characterised by a
wider set of features than the ones extracted from the NASA data.

All data used herein was curated in previous work by following
rigorous processes and made publicly available [40, 55]. In particu-
lar, we use six NASA datasets from the work of Petrić et al. [40],
who applied rules to clean erroneous data from the original NASA
repository [44], and data about nine open-source software systems,
collected by Yatish et al. to ensure robust defect counts [55].

These datasets have different nature and size: They vary in ap-
plication domain, age, total number of modules (ranging from 94
to 8,847) and features (ranging from 38 to 65), and percentage of
defective modules they contain as summarised in Table 5.

5.4 Validation Scenarios
Our experimental design tries to reflect as much as possible the sce-
narios where defect prediction has been applied so far. To this end
we consider three common validation scenarios: Within-Project De-
fect Prediction, Cross-Version Defect prediction and Cross-Project
Defect Prediction.

Repository Dataset Modules (% defective)

NASA

CM1 296 (12.84%)
KC3 123 (13.00%)
MW1 253 (10.67%)
PC1 661 (7.87%)
PC3 1043 (12.18%)
PC5 94 (19.15%)

Realistic

Activemq_5.3.0 2367 (10.90%)
Activemq_5.8.0 3420 (6.02%)
Camel_2.10.0 7914 (2.91%)
Camel_2.11.0 8846 (2.17%)
Derby_10.3.1.4 2206 (30.33%)
Derby_10.5.1.1 2705 (14.16%)
Groovy_1_6_beta_1 821 (8.53%)
Groovy_1_6_beta_2 884 (8.60%)
Hbase_0.95.0 1669 (22.95%)
Hbase_0.95.2 1834 (26.34%)
Hive_0.10.0 1560 (11.28%)
Hive_0.12.0 2662 (8.00 %)
Jruby_1.5.0 1131 (7.25%)
Jruby_1.7.0 1614 (5.39%)
Lucene_3.0 1337 (11.59%)
Lucene_3.1 2806 (3.81%)
Wicket_1.3.0-beta2 1763 (7.37%)
Wicket_1.5.3 2578 (4.07%)

Table 5: Datasets used in our empirical study.

For the NASA datasets, given that each system consists of a
single version, we investigate the Within-Project scenario applying
the Hold-Out validation process where the data is randomly split
into 80% training set and the other 20% which is used for testing.
This procedure is repeated 30 times in order to reduce any possible
bias resulting from the validation splits [3].

For the Realistic datasets, given that each system consists of
multiple releases we investigate both the Cross-Version and Cross-
Project scenarios. In the Cross-Version scenario, for each of the
software systems, we train on one release and test on a different one,
i.e., we train on version v𝑥 and test on version v𝑦 , where 𝑥 < 𝑦 as
done in previous work (see e.g., [19]). In the Cross-Project scenario,
for each of the software systems, we consider the version with the
higher release number as the test set and train the model on the
union of the versions of the other datasets with a lower release
number. In both scenarios, the versions used as train and test sets
are not subsequent releases nor are they the system’s most recent
ones. In addition, there is always a window of at least five months
between these releases. This reduces the likelihood of the snoring
effect or unrealistic labelling as noted in previous studies [2, 5, 25].

5.5 Techniques
In order to study the magnitude of any discrepancy resulting from
the use of different evaluation measures, we consider a variety of
techniques, namely Dummy, Logistic Regression (LR), Naïve Bayes
(NB), Random Forest (RF) and Support Vector Machine (SVM) im-
plemented in Scikit-learn 0.20.2 (Python 3.6.8), belonging
to different classifier families. These are widely studied techniques
in the defect prediction literature [17, 21]. Indeed, the chosen clas-
sifiers are also representative of those employed by the surveyed
papers (see Section 4), as we found that LR is used in 67% of the
surveyed papers (74/111), NB in 62% (69/111), RF in 47% (52/111)
and SVM in 38% (42/111). We briefly describe them below:

Dummy is a simple baseline which generates predictions uni-
formly at random. We use the Scikit-learn’s dummy class.

Naïve Bayes is a statistical classifier that uses the combined
probabilities of the different attributes to predict the target variable,
based on the principle of Maximum a Posteriori [50]. We use the
Scikit-learn’s naive_bayes class.

Logistic Regression is a statistical technique, introduced as an
extension to linear regression, which models the probabilities for
problems with a dichotomous dependent variable [29]. We use the
Scikit-learn’s linear_model class.

Random Forest is a decision tree-based classifier consisting of
an ensemble of tree predictors [10]. It classifies a new instance
by aggregating the predictions made by its decision trees. Each
tree is constructed by randomly sampling 𝑁 cases, with replace-
ment, from the 𝑁 sized training set. RF is known to perform well
on large datasets and to be robust to noise. We use the RF clas-
sifier from the ensemble class in Scikit-learn. We also perform
hyperparameter tuning, denoted as RF𝑇 , where we explore differ-
ent values for the following parameters: min_samples_leaf = [1, 20],
min_samples_split = [2, 20], max_leaf_nodes = [default=None, 10,
50], and n_estimators = [50, 75, 100, 125, 150].

Support Vector Machine is a widely known classification tech-
nique [11]. A linear model of this technique uses a hyperplane

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

in order to separate data points into two categories. However, in
many cases there might be several hyperplanes that can correctly
separate the data. Hence, SVM seeks to find the hyperplane that
has the largest margin, in order to achieve a maximum separation
between the two categories. When the data is not linearly separable,
SVM does the mapping from input space to feature space by using
a kernel function instead of an inner product. In this work, we use
Scikit-learn’s svm class. We also perform hyperparameter tuning
for this technique, denoted as SVM𝑇 , where we try different values
for C and 𝛾 with the Radial Basis Function kernel. Specifically, we
explore the following grids: C = [0.01, 0.5, 1, 512, 8000, 32000] and
𝛾 = [1/n_features, 0.000001, 0.0001, 0.001, 0.01, 0.1, 1, 2, 4, 8].

6 EMPIRICAL STUDY RESULTS
In this section we report and discuss the results we obtained carry-
ing out the empirical study described in Section 5.

6.1 RQ1. Ranking Disagreement
To address RQ1 we compare the performance of Dummy, LR, NB,
RF, RF𝑇 , SVM, SVM𝑇 experimenting with the six most widely used
evaluation measures in literature (shown in Table 3). The results
of this comparison, based on both statistical significance test and
effect size, are summarised in Tables 6 (Within-Project scenario)
and 7 (Cross-Version and Cross-Project scenarios), and discussed in
detail in the rest of the section. Each table reports whether a given
measure disagrees with “All", “More than half, “Less than a half", or
“None" of the other measures considered on a given dataset in our
study3.

When looking at the ranking of techniques obtained by each
evaluation measure, based on the Wilcoxon test, our results show
that across all scenarios (i.e., out of the 24 datasets) examined there
is no case where the use of each measure leads to a same ranking
of the techniques, i.e., the ranking disagreement is never 0. On the
other hand, the number of times the ranking disagreement = 1 (i.e.,
a measure provides a unique ranking) is quite high as it adds up to
a total of 119 out of the 144 cases analysed (83%). In the remaining
cases, the ranking disagreement is always either greater or equal
to 0.60.

Similar observations hold when analysing the results based on
the Vargha and Delaney’s 𝐴12 non-parametric effect size measure.
These results also show that there is no case where all the measures
produce the same ranking (i.e., ranking disagreement is never 0).
When computing the number of times the ranking disagreement
= 1, results show that this happens very frequently, specifically
on a total of 123 out of the 144 cases studied (85%). The ranking
disagreement on the remaining cases is always either equal or
greater than 0.6. Below we discuss the specific results obtained in
each of the scenarios.

When looking at the results obtained for the Within-Project
scenario based on the Wilcoxon test, we observe that each of the
measures produces a unique ranking on two out of the six NASA
datasets (see Table 6). Whereas, four out of six measures produce a
unique ranking on the other four datasets and only two (i.e., Bal-
ance and G-measure) agree with each other on the same ranking.

3Note that for the sake of space, we omit the columns “None" and “Less than a half" as
our results show that there are no such cases.

>Half All
Wilcoxon Eff. Size Wilcoxon Eff. Size

CM1

F1
G-meas.
MCC
Balance
AUC
FPR

KC3

F1
G-meas.
MCC
Balance
AUC
FPR

MW1

F1
G-meas.
MCC
Balance
AUC
FPR

PC1

F1
G-meas.
MCC
Balance
AUC
FPR

PC3

F1
G-meas.
MCC
Balance
AUC
FPR

PC5

F1
G-meas.
MCC
Balance
AUC
FPR

Table 6: RQ1. Ranking disagreement results for the Within-
Project scenario. For each dataset, we report whether a given
evaluation measure disagrees with more than a half, or all
the other measures, based on statistical significance and ef-
fect size analyses

An even stronger discordance than that shown by the Wilcoxon
test is observed when analysing the results based on the 𝐴12 non-
parametric effect size measure for this scenario. We found an agree-
ment between two measures only (i.e., F1 and G-measure) on only
two datasets out of the six under study. Whereas, each measure
produces a unique ranking in all other cases (i.e., 34 out of 36)
considered.

Based on the results for the Cross-Version scenario, shown in
Table 7, we observe that, according to the Wilcoxon statistical
significance test, each of the measures produces a unique ranking
for four out of out nine datasets, while on the remaining ones, only
two measures agree (G-measure and Balance on three datasets, F1
and Balance on one, and F1 and MCC on the other one). In the case
of the analysis based on the Â12 effect size measure, each of the
evaluation measures studied produces a unique ranking on five
datasets. Similarly to the results observed by the Wilcoxon test, a
maximum of two evaluation measures (the same ones denoted by

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

the Wilcoxon test) agree on the remaining datasets. Specifically, G-
measure and Balance agree on three of the remaining four datasets
while F1 and Balance agree on another dataset and F1 and MCC on
the remaining one.

The results based on the Wilcoxon test, in the Cross-Project
scenario (shown in Table 7) are more discordant compared to those
observed in the cross-version scenario. A unique ranking is pro-
duced by each measure on six out of the nine dataset studied. On
two out of the remaining three datasets, only two measures agree
on a single ranking (i.e., Balance and G-measure). Whereas on the
remaining dataset, Balance, F1 and G-measure agree on a rank-
ing while the other measures provide unique ones. In addition,
the 𝐴12 effect size, in line with the results based on the Wilcoxon
Test, shows more discordant results compared to the cross-version
scenario. While no measure agrees on any ranking for six of the
datasets (i.e., each of the measures provides a unique ranking), at
most two evaluation measures (i.e., Balance and G-measure) agree
on a ranking for two of the remaining three datasets. As for the

Cross-Version Cross-Project
>Half All >Half All

Wilcoxon Eff. Size Wilcoxon Eff. Size Wilcoxon Eff. Size Wilcoxon Eff. Size

ActiveMQ

F1
G-meas.
MCC
Balance
AUC
FPR

Camel

F1
G-meas.
MCC
Balance
AUC
FPR

Derby

F1
G-meas.
MCC
Balance
AUC
FPR

Groovy

F1
G-meas.
MCC
Balance
AUC
FPR

HBase

F1
G-meas.
MCC
Balance
AUC
FPR

Jruby

F1
G-meas.
MCC
Balance
AUC
FPR

Lucene

F1
G-meas.
MCC
Balance
AUC
FPR

Hive

F1
G-meas.
MCC
Balance
AUC
FPR

Wicket

F1
G-meas.
MCC
Balance
AUC
FPR

Table 7: RQ1. Ranking disagreement results for the Cross-
Version and Cross-Project scenarios. For each dataset, we
report whether a given evaluation measure disagrees with
more than a half, or all the other measures, based on statis-
tical significance and effect size analyses.

Dataset AUC Balance F1 FPR G-meas. MCC

W
ith

in
-P
ro
je
ct CM1 69% 69% 74% 66% 66% 86%

KC3 80% 71% 86% 71% 86% 91%
MW1 63% 63% 69% 71% 71% 91%
PC1 57% 49% 74% 49% 66% 71%
PC3 77% 66% 91% 66% 83% 80%
PC5 71% 66% 69% 66% 86% 77%
Average 70% 64% 77% 65% 76% 83%

C
ro
ss
-V
er
si
on

ActiveMQ 69% 80% 71% 71% 80% 86%
Camel 83% 69% 80% 71% 80% 86%
Derby 86% 63% 80% 63% 89% 94%
Groovy 94% 71% 77% 71% 91% 80%
Hbase 71% 83% 74% 94% 91% 100%
Hive 60% 66% 60% 60% 71% 100%
JRuby 69% 80% 69% 74% 83% 89%
Lucene 86% 63% 74% 63% 77% 100%
Wicket 80% 80% 69% 80% 74% 86%
Average 77% 73% 73% 72% 82% 91%

C
ro
ss
-P
ro
je
ct

ActiveMQ 86% 71% 77% 80% 89% 100%
Camel 69% 66% 71% 71% 89% 80%
Derby 51% 51% 83% 51% 89% 86%
Groovy 77% 66% 77% 69% 89% 91%
Hbase 71% 66% 69% 66% 97% 100%
Hive 77% 71% 69% 71% 94% 91%
JRuby 57% 83% 60% 66% 66% 86%
Lucene 69% 63% 86% 63% 100% 94%
Wicket 89% 74% 91% 80% 97% 89%
Average 72% 68% 76% 69% 90% 91%

Table 8: RQ2. Percentage of rank disruption per measure
based on statistical significance analysis.

remaining dataset, results show that Balance, F1 and G-measure
agree on the same ranking whereas the other evaluation measures
produce unique rankings.

Answer to RQ1: There is no case where all evalua-
tionmeasures produce the same ranking. In fact, the
evaluation measures produce a unique ranking in
83% and 85% of the cases according to the analysis
based on the Wilcoxon test and 𝐴12 effect size, re-
spectively. There are only very few cases where at
most three (less than 1% according to both statistical
and effect size analyses) or two evaluation measures
(8% and 5% according to the Wilcoxon test and 𝐴12
effect size, respectively) provide the same ranking,
but even in those cases it is not always the same set
of evaluation measures that agree on a ranking.

6.2 RQ2. Rank Disruption
Tables 8 and 9 report the rank disruption values obtained per mea-
sure per dataset for all scenarios when analysed based on the
Wilcoxon Test and Vargha and Delaney’s 𝐴12 effect size results,
respectively.

For the Within-Project scenario, the average rank disruption
across the NASA datasets varies between 64% (Balance) and 83%
(MCC) on average when basing the results on the Wilcoxon test

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

Dataset AUC Balance F1 FPR G-meas. MCC

W
ith

in
-P
ro
je
ct CM1 94% 83% 74% 74% 80% 80%

KC3 63% 63% 86% 63% 89% 89%
MW1 66% 66% 74% 69% 74% 91%
PC1 77% 77% 80% 71% 77% 91%
PC3 83% 74% 83% 77% 83% 97%
PC5 60% 57% 57% 69% 100% 69%
Average 74% 70% 76% 70% 84% 86%

C
ro
ss
-V
er
si
on

ActiveMQ 69% 86% 71% 71% 77% 83%
Camel 83% 69% 80% 71% 80% 86%
Derby 74% 63% 74% 63% 83% 94%
Groovy 86% 69% 77% 69% 83% 86%
Hbase 71% 83% 74% 94% 91% 100%
Hive 57% 69% 60% 57% 74% 100%
JRuby 66% 89% 66% 77% 83% 89%
Lucene 69% 57% 80% 57% 77% 100%
Wicket 77% 71% 71% 74% 77% 91%
Average 72% 73% 73% 70% 81% 92%

C
ro
ss
-P
ro
je
ct

ActiveMQ 83% 77% 77% 86% 86% 94%
Camel 71% 66% 60% 63% 91% 77%
Derby 49% 49% 77% 49% 89% 89%
Groovy 71% 57% 71% 71% 86% 83%
Hbase 71% 66% 71% 71% 94% 100%
Hive 80% 66% 80% 66% 91% 97%
JRuby 54% 83% 57% 63% 69% 80%
Lucene 69% 63% 86% 63% 100% 94%
Wicket 89% 74% 91% 80% 97% 89%
Average 71% 67% 75% 68% 89% 89%

Table 9: RQ2. Percentage of rank disruption per measure
based on effect size analysis.

and between 70% (Balance) and 86% (MCC) when the analysis is
based on 𝐴12, depending on the evaluation measure used.

Similarly for the Cross-Version scenario the average rank dis-
ruption across the nine Realistic datasets ranges from 72% (FPR) to
91% (MCC) based on the Wilcoxon test and from 70% (FPR) to 92%
(MCC) based on 𝐴12.

The rank disruption is still very high when looking at the Cross-
Project scenario, with average results across the nine systems rang-
ing from 68% (Balance) to 91% (MCC) based on the Wilcoxon test
and from 67% (Balance) to 89% (G-measure and MCC) based on𝐴12.

We can conclude that both analyses (i.e., Wilcoxon test and 𝐴12)
provide similar rank disruption results for all the three scenarios.

We also perform a more fine grained analysis of our results to get
a better understanding of the impact the use of these different eval-
uation measures can have on the conclusion validity of a study. We
therefore examine the rank disruption of each evaluation measure
when considering the top three ranked techniques, then consid-
ering the top two ranked and then the first ranked technique, for
each scenario investigated. Figures 3 and 4 show the average rank
disruptions of the measures, across all datasets, for each scenario
based on statistical test and effect measure analyses, respectively.
Top Three Ranked Techniques: We can observe from Figure 3 that
the rank disruption remains very high when considering the top
three ranked techniques for each scenario. Specifically, according to
the Wilcoxon test (shown in Figure 3c), the rank disruption ranges
from 76% (Balance and G-meas.) to 93% (FPR) when evaluating

(a) Rank disruption of top three ranked tech-
niques

(b) Rank disruption of top two ranked tech-
niques

(c) Rank disruption of top ranked technique

Figure 3: RQ2. Rank disruption (average across all datasets)
of each evaluation measure for the top three techniques (a),
top two (b) and first ranked technique (c) for each scenario
investigated based on statistical significance analysis.

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

(a) Rank disruption of top three ranked tech-
niques

(b) Rank disruption of top two ranked tech-
niques

(c) Rank disruption of top ranked technique

Figure 4: RQ2. Rank disruption (average across all datasets)
of each evaluation measure for the top three techniques (a),
top two (b) and first ranked technique (c) for each scenario
investigated based on effect size analysis.

the Within-Project scenario, from 68% (MCC) to 93% (FPR) in the
Cross-Version scenario and from 64% (Balance) to 96% (FPR) in the
Cross-Project scenario. Similar observations hold when analysing
the rank disruption based on 𝐴12, with its values ranging between
71% (G-meas.) and 93% (AUC and FPR) for the Within-Project sce-
nario, between 67% (Balance and MCC) and 93% (FPR) when evalu-
ating predictions across versions (i.e., Cross-Version scenario) and
between 66% (Balance) and 93% (FPR) in the Cross-Project scenario.
Top Two Ranked Techniques: This high level of rank disruption is
also consistent when considering the top two ranked techniques
only. Figure 3b shows that, based on the Wilcoxon text, the rank
disruption ranges between 75% (Balance and G-meas.) to 100% (FPR)
when evaluating the Within-Project scenario, between 64% (MCC)
and 98% (FPR) in the Cross-Version scenario, and between 64%
(Balance and G-meas.) and 98% (FPR) when evaluating predictions
across projects (i.e., Cross-Project scenario). The analysis based on
𝐴12 also agrees with that of the statistical significance test. Figure 4b
reports that the average rank disruption, across all datasets, ranges
between 63% (Balance and G-meas.) and 92% (AUC and FPR) in the
Within-Project scenario. When considering the Cross-Version and
Cross-Project scenarios, the average rank disruption is a bit higher,
with its values ranging between 66% (MCC) and 99% (FPR) and
between 68% (Balance and G-meas.) and 99% (FPR), respectively.
Top Ranked Technique: High values of rank disruption are also be
observed when only the top ranked technique is considered. The
average rank disruption based on the the Wilcoxon test (see Figure
3a) varies between 67% (Balance and G-meas.) and 100% (FPR) in
the Within-Project scenario, between 62% (MCC) and 98% (FPR) in
the Cross-Version scenario, and between 76% (Balance and G-meas.)
and 98% (FPR) in the Cross-Project scenario. Similar to previous
analyses, the results based on the effect size measure agree with
those based on the Wilcoxon test. As shown in Figure 4c, the rank
disruption based on the 𝐴12 ranges between 63% (Balance and G-
meas.) and 100% (FPR) in the Within-Project scenario, between 60%
(F1 and MCC) and 98% (FPR) when evaluations are carried out on
predictions of different versions within a same software project (i.e.,
Cross-Version scenario), and between 76% (Balance and G-meas.)
and 98% (FPR) in the Cross-Project scenario.

Answer to RQ2: The rank disruption for each of the
measures investigated is high on average, ranging
from 64% to 92% depending on the measure and val-
idation scenario. Our results also show that high
disruption is also present when investigating the
top ranked techniques only, with an average rank
disruption ranging between 60% and 100% depend-
ing on the validation scenario, the measure and the
number of top ranked techniques considered.

7 THREATS TO VALIDITY
We discuss below how we mitigate possible threats to the internal,
construct and external validity of this study.

Internal Validity: To mitigate the threat of missing relevant work
or information in our literature review, we have specified the query
we used for our search, defined clear inclusion criteria and followed

Conference’17, July 2017, Washington, DC, USA Rebecca Moussa and Federica Sarro

a rigours procedure recommended and used in previous work to
filter out irrelevant articles [23, 30]. Although we cannot and do
not claim that the set of 111 studies we investigates is exhaustive,
it is reasonable to believe that it is representative of the current
state-of-the-art. As a matter of fact, we note that two prominent
defect prediction literature surveys [17, 45] published in IEEE TSE
in 2012 and 2014, reviewed, respectively, 36 and 42 papers, while
in this study we analyse 111 articles. The gathering and filtering
procedure was performed by both authors, to ensure reliability and
reduce researcher bias.

Construct Validity: We carefully calculated the performance mea-
sures used in the study, and applied the statistical tests, verifying
all the required assumptions.

External Validity: As happens with most empirical studies, the
subjects used in our study might not be representative of the whole
population. However, we have designed our study aiming at using
measures, techniques, datasets, and validation scenarios, which
are as representative as possible of the defect prediction literature.
First of all, we focused on binary evaluation measure as these are
the most common in literature [17] and we strove to consider the
measures most used in previous work (see Section 4). To increase
the relevance to the defect prediction literature we also investigated
class level defect binary prediction models in three validation sce-
narios (i.e., within-project, cross-release and cross-project) widely
investigated in the literature [27, 47] as opposed, for example, to
more recent (and therefore less studied) ones such as effort-aware
models [7, 35, 37, 53] or binary prediction at line level [49], method
level [39] or commit/change level [16, 26, 38, 52]. Similarly, we con-
sidered traditional classification techniques widely used in previous
studies [17] as described in Section 5.5.

Moreover, we used a publicly available implementation of these
techniques provided by the Scikit-learn library, to reduce possi-
ble biases and errors arising from the use of ad-hoc implementations.
We also used publicly available datasets previously investigated in
the literature, which are of different nature and size, and which have
been carefully curated in previous work as explained in Section 5.3.
We plan to make our scripts and data publicly available on-line [1]
upon acceptance, to facilitate the replication and extension of our
work.

8 CONCLUSIONS
In this paper, we investigate the effect of using different evalua-
tion measures for comparing the performance of software defect
prediction models.

Our review of previous work published over the last decade, has
revealed that the majority of the studies do not provide rationale for
the measures used with regard to the characteristic of the datasets
and/or aim of their study. Moreover, they often use measures which
only partially reflect the performance of defect prediction models,
and that the measures used are often the most susceptible ones to
data imbalance. Further, our empirical study reveals that different
evaluation measures provide unique rankings in 82% and 85% of
the cases studied according to the Wilcoxon test and effect size
measure, respectively. Moreover, the rank disruption for each of the
measures investigated is high (ranging from 61% to 90% on average
depending on the measure and validation scenario). These results

suggest that in the majority of the cases, a prediction technique
that would be believed to be better than others when using a given
evaluation measure becomes worse when using a different one.
Our results also show that the percentage of disruption when only
considering the top ranked techniques is just as significant as when
all ranks are studied, rendering the results even more striking.

We hope that the empirical evidence provided herein on the sig-
nificant differences that arise from the use of evaluation measures
will encourage the community to act upon this matter, and care-
fully select the measures based on factors which are specific to the
problem at hand [17]. These include (1) the class distribution of the
training data; (2) the way in which the model will be used; (3) the
way in which the model has been built. Moreover, we recommend
to include in the set of evaluation measures, at least one able to cap-
ture the full picture of the confusion matrix (i.e., the correctly and
incorrectly classified instances), such as MCC, so that it is possible
to assess whether proposals made in previous work can be applied
for purposes different than the ones they were originally intended
for. Besides, we recommend to report, whenever possible, the raw
confusion matrix from which the results were extracted as this can
enable other researchers to compute any measure of interest and
facilitate them to draw meaningful observations across different
studies.

ACKNOWLEDGMENTS
Rebecca Moussa and Federica Sarro are supported by the ERC
Advanced fellowship grant EPIC (741278) and the Department of
Computer Science of University College London.

REFERENCES
[1] [n. d.]. On-line appendix - On the Use of EvaluationMeasures for Defect Prediction

Models. https://github.com/SOLAR-group/dpevalmeasures
[2] Aalok Ahluwalia, Massimiliano Di Penta, and Davide Falessi. 2020. On the Need

of Removing Last Releases of Data When Using or Validating Defect Prediction
Models. arXiv preprint arXiv:2003.14376 (2020).

[3] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. STVR 24, 3 (2014),
219–250.

[4] Erik Arisholm, Lionel C Briand, and Eivind B Johannessen. 2010. A systematic and
comprehensive investigation of methods to build and evaluate fault prediction
models. JSS 83, 1 (2010), 2–17.

[5] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. 2020. On the
time-based conclusion stability of cross-project defect predictionmodels. Empirical
Software Engineering 25, 6 (2020), 5047–5083.

[6] Mohamed Bekkar, Hassiba Kheliouane Djemaa, and Taklit Akrouf Alitouche. 2013.
Evaluation measures for models assessment over imbalanced data sets. J Inf Eng
Appl 3, 10 (2013).

[7] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, and N. Ubayashi. 2016.
Empirical Evaluation of Cross-Release Effort-Aware Defect Prediction Models. In
Procs. of QRS. 214–221.

[8] Henry Bodkin. 2019. https://www.telegraph.co.uk/news/2018/10/19/nhs-blunder-
put-10000-patients-risk-wrong-prescription/

[9] David Bowes, Tracy Hall, and David Gray. 2012. Comparing the performance of
fault predictionmodels which report multiple performancemeasures: recomputing
the confusion matrix. In Procs. of PROMISE. 109–118.

[10] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[11] Christopher JC Burges. 1998. A tutorial on support vector machines for pattern

recognition. Data mining and knowledge discovery 2, 2 (1998), 121–167.
[12] Davide Chicco and Giuseppe Jurman. 2020. The advantages of the MCC over F1

score and accuracy in binary classification evaluation. BMC genomics 21, 1 (2020),
6.

[13] Harald Cramir. 1946. Mathematical methods of statistics. Princeton U. Press
(1946).

[14] Peter Flach and Meelis Kull. 2015. Precision-recall-gain curves: PR analysis done
right. In Advances in neural information processing systems. 838–846.

https://github.com/SOLAR-group/dpevalmeasures
https://www.telegraph.co.uk/news/2018/10/19/nhs-blunder-put-10000-patients-risk-wrong-prescription/
https://www.telegraph.co.uk/news/2018/10/19/nhs-blunder-put-10000-patients-risk-wrong-prescription/

On the Use of Evaluation Measures for Defect Prediction Studies Conference’17, July 2017, Washington, DC, USA

[15] George Forman and Martin Scholz. 2010. Apples-to-apples in cross-validation
studies: pitfalls in classifier performance measurement. ACM SIGKDD 12, 1 (2010),
49–57.

[16] Takafumi Fukushima, Yasutaka Kamei, Shane McIntosh, Kazuhiro Yamashita, and
Naoyasu Ubayashi. 2014. An Empirical Study of Just-in-Time Defect Prediction
Using Cross-Project Models. In Procs. of MSR. 172–181.

[17] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2011.
A systematic literature review on fault prediction performance in software engi-
neering. IEEE TSE 38, 6 (2011), 1276–1304.

[18] David J Hand. 2009. Measuring classifier performance: a coherent alternative to
the area under the ROC curve. Machine learning 77, 1 (2009), 103–123.

[19] Mark Harman, Syed Islam, Yue Jia, Leandro L Minku, Federica Sarro, and Komsan
Srivisut. 2014. Less is more: Temporal fault predictive performance over multiple
hadoop releases. In Procs. of SSBSE. Springer, 240–246.

[20] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. IEEE
Transactions on Knowledge and Data Engineering 21, 9 (2009), 1263–1284. https:
//doi.org/10.1109/TKDE.2008.239

[21] Steffen Herbold, Alexander Trautsch, and Jens Grabowski. 2017. A comparative
study to benchmark cross-project defect prediction approaches. IEEE TSE 44, 9
(2017), 811–833.

[22] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. 2021. A Survey of
Performance Optimization for Mobile Applications. IEEE TSE (2021).

[23] Max Hort, Maria Kechagia, Federica Sarro, and Mark Harman. 2021. A Survey of
Performance Optimization for Mobile Applications. IEEE TSE (2021).

[24] Yue Jiang, Bojan Cukic, and Yan Ma. 2008. Techniques for evaluating fault
prediction models. EMSE 13, 5 (2008), 561–595.

[25] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves
Le Traon, and Mark Harman. 2019. The importance of accounting for real-world
labelling when predicting software vulnerabilities. In Procs. of ESEC/FSE. 695–705.

[26] Yasutaka Kamei, Takafumi Fukushima, Shane McIntosh, Kazuhiro Yamashita,
Naoyasu Ubayashi, and Ahmed E. Hassan. 2016. Studying just-in-time defect
prediction using cross-project models. ESE 21, 5 (2016), 2072–2106.

[27] Y. Kamei and E. Shihab. 2016. Defect Prediction: Accomplishments and Future
Challenges. In Procs. of SANER. 33–45.

[28] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. 2015. What Do Mobile App
Users Complain About? IEEE Software 32, 3 (2015), 70–77.

[29] David G Kleinbaum, K Dietz, M Gail, Mitchel Klein, and Mitchell Klein. 2002.
Logistic regression. Springer.

[30] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.
2016. A survey of app store analysis for software engineering. IEEE TSE 43, 9
(2016), 817–847.

[31] Brian W Matthews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. BBA-Protein Structure 405, 2 (1975), 442–451.

[32] Tim Menzies, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald. 2007.
Problems with Precision: A Response to "Comments on ’Data Mining Static Code
Attributes to Learn Defect Predictors’". IEEE Transactions on Software Engineering
33, 9 (2007), 637–640. https://doi.org/10.1109/TSE.2007.70721

[33] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data Mining Static Code
Attributes to Learn Defect Predictors. IEEE Transactions on Software Engineering
33, 1 (2007), 2–13. https://doi.org/10.1109/TSE.2007.256941

[34] Tim Menzies and Martin J. Shepperd. 2011. Special issue on repeatable results in
software engineering prediction. Empirical Software Engineering 17 (2011), 1–17.

[35] Mariam El Mezouar, Feng Zhang, and Ying Zou. 2016. Local versus Global Models
for Effort-Aware Defect Prediction. In Procs. of CASCON. 178–187.

[36] Sandro Morasca and Luigi Lavazza. 2020. On the assessment of software defect
prediction models via ROC curves. ESE 25, 5 (2020), 3977–4019.

[37] C. Ni, X. Xia, D. Lo, X. Chen, and Q. Gu. 2020. Revisiting Supervised and Un-
supervised Methods for Effort-Aware Cross-Project Defect Prediction. IEEE TSE
(2020).

[38] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2019. Fine-grained just-
in-time defect prediction. JSS 150 (2019), 22–36.

[39] Luca Pascarella, Fabio Palomba, and Alberto Bacchelli. 2020. On the performance
of method-level bug prediction: A negative result. JSS 161 (2020), 110493.

[40] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Baddoo.
2016. The jinx on the NASA software defect data sets. In Procs. of EASE. 1–5.

[41] David Martin Powers. 2011. Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation. (2011).

[42] Federica Sarro, Mark Harman, Yue Jia, and Yuanyuan Zhang. 2018. Customer
rating reactions can be predicted purely using app features. In Procs. of RE. IEEE,
76–87.

[43] Federica Sarro, Alessio Petrozziello, and Mark Harman. 2016. Multi-objective
software effort estimation. In Procs. of ICSE. 619–630.

[44] J. Sayyad Shirabad and T.J. Menzies. 2005. The PROMISE Repository of Software
Engineering Databases. http://promise.site.uottawa.ca/SERepository

[45] Martin Shepperd, David Bowes, and Tracy Hall. 2014. Researcher bias: The use
of machine learning in software defect prediction. IEEE TSE 40, 6 (2014), 603–616.

[46] Q. Song, Y. Guo, and M. Shepperd. 2019. A Comprehensive Investigation of the
Role of Imbalanced Learning for Software Defect Prediction. IEEE TSE 45, 12
(2019), 1253–1269.

[47] B. Turhan, T. Zimmermann, F. Shull, L. Layman, A. Marcus, A. Butcher, D. Cok,
and T. Menzies. 2013. Local versus Global Lessons for Defect Prediction and Effort
Estimation. IEEE TSE 39, 06 (2013), 822–834.

[48] Mauno Vihinen. 2012. How to evaluate performance of prediction methods?
Measures and their interpretation in variation effect analysis. In BMC genomics,
Vol. 13.

[49] SupatsaraWattanakriengkrai, Patanamon Thongtanunam, Hideaki Tantithamtha-
vorn, Chakkrit Hata, and Kenichi Matsumoto. 2020. Predicting Defective Lines
Using a Model-Agnostic Technique. In IEEE IEEE TSE.

[50] Ian H Witten, Eibe Frank, and Mark A Hall. 2005. Practical machine learning
tools and techniques. Morgan Kaufmann (2005), 578.

[51] Xiao Xuan, David Lo, Xin Xia, and Yuan Tian. 2015. Evaluating Defect Prediction
Approaches Using a Massive Set of Metrics: An Empirical Study. In Procs. of ACM
SAC. 1644–1647.

[52] M. Yan, X. Xia, Y. Fan, A. E. Hassan, D. Lo, and S. Li. 2020. Just-In-Time Defect
Identification and Localization: A Two-Phase Framework. IEEE TSE (2020), 1–1.

[53] Meng Yan, Xin Xia, Yuanrui Fan, David Lo, Ahmed E. Hassan, and Xindong
Zhang. 2020. Effort-Aware Just-in-Time Defect Identification in Practice: A Case
Study at Alibaba. ACM, 1308–1319.

[54] Jingxiu Yao and Martin Shepperd. 2020. Assessing software defection prediction
performance: why using the Matthews correlation coefficient matters. (2020),
120–129.

[55] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tan-
tithamthavorn. 2019. Mining software defects: should we consider affected re-
leases?. In Procs. of ICSE. 654–665.

[56] Hongyu Zhang and Xiuzhen Zhang. 2007. Comments on "DataMining Static Code
Attributes to Learn Defect Predictors". IEEE Transactions on Software Engineering
33, 9 (2007), 635–637. https://doi.org/10.1109/TSE.2007.70706

https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TKDE.2008.239
https://doi.org/10.1109/TSE.2007.70721
https://doi.org/10.1109/TSE.2007.256941
http://promise.site.uottawa.ca/SERepository
https://doi.org/10.1109/TSE.2007.70706

	Abstract
	1 Introduction
	2 Related Work
	3 A Hitchhiker's Guide to Defect Prediction Evaluation Measures
	4 Investigating the Use of Evaluation Measures in the Defect Prediction Literature
	4.1 Search Methodology
	4.2 Results

	5 Empirical Study Design
	5.1 Research Questions
	5.2 Ranking Disagreement and Rank Disruption
	5.3 Datasets
	5.4 Validation Scenarios
	5.5 Techniques

	6 Empirical Study Results
	6.1 RQ1. Ranking Disagreement
	6.2 RQ2. Rank Disruption

	7 Threats to Validity
	8 Conclusions
	References

