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I. INTRODUCTION

This keynote introduces the use of Search-Based Software
Engineering (SBSE) to tackle some of the most pressing
ethical requirements posed by modern software systems. For
example, in automated decision-making systems and social
systems, fairness and safety properties become prominent
concerns, whereas the dramatic increase in CO2 emission
due to Information and Communication Technologies (ICT)
generates growing concerns for software sustainability [1].

While the main requirement for more traditional software
systems is to provide the user with the right functionalities
(i.e., implement the functional requirements correctly), real-
ising modern and more complex software systems involves
ensuring that a software is designed, implemented, and de-
ployed in a way that takes into account the impact it has
on users, society, and the environment. This calls for more
comprehensive engineering practices for developing software
systems with a focus on ethical, social, and environmental
considerations, dubbed as responsible software engineering.

However, realising these type of systems often involves
finding the best or most effective solution among a vast
number of possible alternatives and one cannot expect for a
software engineer, even the most expert, to be able to manually
find all possible opportunities. On the other hand, SBSE
provides a framework to systematically explore and evaluate
these alternatives, allowing engineers to identify optimal or
near-optimal solutions [2].

In this keynote, we will show how SBSE can be a flexible
and powerful mean to produce multiple variants of a software
system empowering engineers and decision-makers to make
informed choices that balance conflicting objectives and that
align with their goals and priorities for achieving responsible
software. We will present some recent results from my group
and from others, and discuss future directions towards realising
greener, fairer and safer software systems.

II. WHAT IS SBSE?

SBSE involves the application of search-based optimisation
techniques to various aspects of the software engineering
process. It combines principles from software engineering and
optimization algorithms to automate and improve software
tasks which are usually characterised by a large solution space
and competing goals. These solutions can be represented as a
set of variables or parameters that can be optimised to obtain
the desired goal(s). The search algorithms are then used to
explore this search space to find the best possible solution,
guided by an objective function that measures the quality of
each solution.

The benefits of SBSE include the potential for the au-
tomation, optimization of software engineering tasks, and the
ability to handle complex problems which would be difficult
to solve manually. SBSE has been successfully applied to
various software engineering tasks [2], including but not lim-
ited to software project management [3]–[5], software defect
prediction [6], software testing [7], automated program repair
[8]. Overall, search-based software engineering has been an
active area of research and has shown to have the potential
to revolutionize various aspects of software development by
providing automated and optimized solutions to challenging
software engineering problems.

III. SBSE FOR RESPONSIBLE SOFTWARE ENGINEERING

In this keynote, we argue that SBSE can play a fundamental
role in achieving responsible software systems. In the follow-
ing, we describe some possible areas of applications.

A. Software Footprint

The footprint caused by the usage of communication and
computing technologies has been expanding globally in the
last decade, with the rapid and ever growing adoption of
ubiquitous mobile devices and Artificial Intelligence (AI)-
enabled systems for everyday life activities [1], [9]. Software
contributes to energy consumption on par of other attributes
as hardware, data and network. However, software engineers
were rarely trained to consider the energy consumption of
the systems they create [1]. Even if engineers are nowadays
more aware of the energy needs of their software, it remains
difficult for them to manually cater for such a challenging non-
functional requirement [10], [11]. Previous work has shown



that evolutionary computing is well-suited to help developers
automatically improve non-functional performance properties
of software such as energy and memory consumption. Specif-
ically, Genetic Improvement (GI) [12] is a field of SBSE that
studies how to use evolutionary computing to automatically
modify the source code to improve software non-functional
properties. Although GI techniques for non-functional prop-
erties exist for traditional software, these are not as prevalent
in other application domains such as mobile computing [11]
and AI [13]. We argue that SBSE (specifically GI) can be
exploited to improve the footprint of modern software systems.
In fact, GI is able to automatically create multiple versions of
a same software providing the same set of functionalities but
yielding different energy consumption profiles. Moreover, the
multi-objective nature of evolutionary computation allows for
stakeholders to choose the desired trade-off between quality
and efficiency.

B. Software Fairness

Decisions in several domains are increasingly assisted or
taken by automated software systems mainly relying on AI
components. Important ethical implications arise when such
decision systems are used in sensitive contexts (e.g., health-
care, justice, loans) and several biased decisions have been
found in existing systems. For example, biased automated
decision systems were used to allocate fewer Black patients
(who were equally sick as White individuals), to healthcare
programs in US hospitals [14], or to assign a higher risk of
recidivism to Black people than White people under the same
conditions [15].

Therefore, algorithmic fairness has emerged as a crucial
requirement to guarantee that such automated decision-making
software systems do not discriminate against specific individ-
uals or entire groups, especially minorities [16], [17]. Never-
theless, software fairness requires more than a fair prediction
model. Such a model needs to be fair while maintaining a
satisfactory accuracy. In fact, has been proved that designing
systems to improve for fairness often decrease their accuracy.
This phenomenon is known as the fairness-accuracy trade-
off [18], [19]. Moreover it needs to be used by practitioners
in real-world environments, where the notion of fairness may
differ [20]–[23].

We argue that SBSE can aid to strike an optimal fairness-
accuracy trade-off as well as to bridge the gap between
the two roles of prediction-modeler (usually taken by data
scientists, engineers, or computer scientists) and the decision-
maker (usually taken by product managers, business strate-
gists, doctors, depending on the application domain).

Chakraborty et al. [24] and Hort et al. [25] were the first to
propose the use of multi-objective search to simultaneously
optimise for fairness and accuracy/correctness of machine
learning and word-embedding models, respectively. Perera
et al. [26] showed that using search-based fairness testing
outperforms existing fairness testing approaches. Hort et al.
[27] showed that search-based approaches can be used to

automatically repair fairness and accuracy in decision-making
software.

Moreover, SBSE can enable the decision-maker to explic-
itly specify fairness requirements and constraints, as well
as support the job of the prediction-modeler by automating
the development and testing of several alternative optimal
solutions based on the given requirements, from which the
decision-maker can choose from.

SBSE can also help engineers tackle a more challenging
notion of fairness, called intersectional fairness, which encom-
passes multiple sensitive attributes, such as race and gender,
simultaneously [28], [29].

C. Safety In On-line Social Systems

Social system uptake has reached the point where they have
become crucial for interpersonal communication, business-to-
customer communication, and government-to-citizen commu-
nication. They have become a driver for innovation, a vehicle
for businesses to reach their customers, and a way for families
and friends to stay connected. Nevertheless, a number of
malicious users can create harm by misusing well-intentioned
software platforms as a tool to attack innocent users.

Keeping users safe in on-line social systems has a multi ob-
jective character [30]. Ideally one would like to automatically
improve existing social systems so that they prevent malicious
users, while maintaining or enhancing the user experience for
innocent users. This is a challenging problem, where the two
objectives are conflicted with each other.

SBSE techniques have been repeatedly proven to be ideal
for tackling enormous problem spaces with tight constraints
and complex feature interactions, and we envision that they
can be used to optimsise social systems to maximise the
potential for good while simultaneously minimising the risk of
harm. We conjecture that SBSE can provide a single unified
way to tackle all forms of online harm including, scamming,
spamming, bullying, harassment, hate speech, misinformation,
and grooming. Each harm type requires its own set of fitness
functions to guide the optimisation of the social system by
reducing that particular form of harm, but all such fitness
functions fit into the overall general framework of search based
optimisation.
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