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Fairness testing aims at mitigating unintended discrimination in the decision-making process of data-driven
Al systems. Individual discrimination may occur when an Al model makes different decisions for two distinct
individuals who are distinguishable solely according to protected attributes, such as age and race. Such
instances reveal biased Al behaviour, and are called Individual Discriminatory Instances (IDIs).

In this paper, we propose an approach for the selection of the initial seeds to generate IDIs for fairness
testing. Previous studies mainly used random initial seeds to this end. However this phase is crucial, as
these seeds are the basis of the follow-up IDIs generation. We dubbed our proposed seed selection approach
I&D. Tt generates a large number of initial IDIs exhibiting a great diversity, aiming at improving the overall
performance of fairness testing.

Our empirical study reveals that I&D is able to produce a larger number of IDIs with respect to four
state-of-the-art IDI generation approaches, generating 1.86X more IDIs on average. When using the IDIs
generated with I&D for retraining a machine learning model, the percentage of IDIs in the input space I is
decreased by 24.9% on average, implying that I&D is effective for improving the model’s fairness.
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1 INTRODUCTION

Artificial Intelligence (AI) systems have become increasingly popular over the years, and are now
at the core of many data-driven software systems such as loan approval and risk assessments [45].
Although machine learning models have achieved significant performance improvements, their
fairness remains a prominent concern that needs to be addressed [7, 12, 34].
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Fig. 1. Sketch map of individual discriminatory instances (IDIs) and their generation process.

Software fairness testing sets out to reveal fairness bugs of the software system (i.e., situations
that reveal bias) [14]. Among fairness testing goals, individual discrimination has been addressed
frequently [5, 16]. Individual discrimination occurs when a machine learning model yields different
prediction results for the instances that can only be distinguished by one or more protected
attributes, such as age, race, or gender [5, 25]. For example, two individuals with different gender
(e.g., female and male), all other attributes being equal, should receive the same response when
applying for a bank loan.

To date, fairness testing of machine learning and Al systems has become a topic of interested
in Software Engineering research [14, 39]. This includes approaches for generating individual
discriminatory instances (IDIs) for fairness testing [14], such as AEQUITAS [44], Symbolic Genera-
tion (SG) [3], ADF [50], and EIDIG [49]. All these existing IDI generation approaches follow the
same three-phase framework, as depicted in Figure 1. First, they choose initial seeds from a given
dataset, i.e., the black dot in Figure 1, according to a given strategy.! Second, they perform a global
generation to explore a wider range of IDIs, which is illustrated by the blue squares in Figure 1(b).
Once an IDI is found during the global generation phase, a local generation is performed in the third
step. The local generation searches for further IDIs in the neighborhood of the collected IDIs from
the global generation phase, which is depicted in gray in Figure 1(b). Afterwards, the model can be
retrained to minimize discrimination using the generated IDIs.

The existing approaches focus on improving the latter two phases to boost the overall perfor-
mance of fairness testing. For example, AEQUITAS randomly perturbs attribute values in the local
generation phase. SG globally creates a decision tree and then performs symbolic generation for
the local generation. On neural network models, ADF and EIDIG employ an adversarial sampling
technique during both the global and local generation phases. Regarding the first phase (i.e., ini-
tial seeds selection), existing approaches adopt random or clustering-based sampling strategies.
However, we argue that this phase is very important to the overall performance of fairness testing.
Specifically, since this phase is the basis of the follow-up global and local generation phases, the
quality of initial seeds could directly affect the performance of IDI generation. On the one hand, as
demonstrated in the existing study [49, 50], the number of generated IDIs in the two-generation

ISpecifically, AEQUITAS selects seeds from the input data using a random sampling mechanism, while other approaches,
such as SG, ADF, and EIDIG, cluster the input data using K-means, and then choose initial seeds from each cluster on a
round-robin basis.
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phases grows linearly with the number of IDIs in the initial seeds. That is, the more initial IDIs
provided, the more IDIs may be generated, which is advantageous for fairness testing. On the other
hand, initial IDIs with a high diversity could facilitate generating a larger variety of IDIs, which
can improve the retraining and debiasing of machine learning models. That is, both the number of
IDIs and the diversity of IDIs are pursued in practice, which can be controlled by the quality of the
initial IDIs, and thus designing a more effective initial seed selection strategy is desired.

In this work, we propose a novel initial seed selection approach, named I&D. Our approach aims
to obtain a large initial set of IDIs, and thus improve the overall performance of fairness testing.
That is, the contribution of I&D is orthogonal to existing fairness testing approaches. I&D can be
integrated with any existing fairness testing approaches by replacing their initial seed selection
method with I&D, in order to further improve their performance.

I&D is required to address two major challenges: 1) How do we effectively select seeds to obtain
more initial IDIs? and 2) How do we improve the diversity of initial IDIs? For the first challenge, we
design a novel IDI initialization algorithm that constructs a “chiral” model,? which is trained by
mutating the protected attributes of the training data. It is more likely to identify initial IDIs if the
chiral model predicts differently from the original model, for the same instance. Moreover, the use
of a chiral models allows us to obtain IDIs close to the decision boundary of a classification model
(see Section 3 for more details).

To overcome the second challenge, we propose to use the SHAP value [29], which is a game-
theory-based approach for explaining the prediction output of any machine learning model, to
further interpret the difference in prediction behavior between the chiral model and the original
model for each initial IDI. Then, I&D clusters the initial IDIs based on their SHAP values, and
selects diverse initial IDIs from each cluster in a round-robin way for subsequent usage in the
global and local generation phases.

To comprehensively evaluate the effectiveness of I&D, we undertake a thorough empirical
evaluation using three open-source datasets that have been widely used in prior studies [3, 13, 44,
49, 50]. To investigate whether I&D boosts the performance of existing IDI generation approaches,
such as AEQUITAS, SG, ADF, and EIDIG, we integrate I&D with each of them by replacing their
initial seed selection strategy with I&D, and further investigate the performance on four different
machine learning models (i.e., Logistic Regression, Support Vector Machines, Decision Trees, and
Multi-layer Perceptron Classifier).

The empirical results reveal that I&D can effectively obtain improved initial seeds, and signifi-
cantly outperform all the compared IDI generation approaches with their original initial seeds. For
example, the average number of generated IDIs with I&D is 2, 342, while the original approaches
generated 1,260 IDIs on average. Thereby, I&D achieves an improvement of 1.86X. The results
show that this is a promising approach for improving IDI initialization. Our results also show that
using I&D can improve the fairness of these machine learning models considered herein, when
such a model is re-trained with the IDIs generated by I&D.

Overall, the key contributions of our work are as follows:

o To the best of our knowledge, this is the first study to improve existing fairness testing
techniques by providing initial IDIs.

e To produce more, diverse initial IDIs, we design and implement a method called I&D through
building a chiral model and measuring the SHAP value of each initial IDI for explaining the
prediction difference between the chiral and original models.

2Chirality is a feature of asymmetry that is important in many research works [10]. An object (model) is chiral if it can be
distinguished from its mirror image (trained by mutated data); that is, it cannot be superimposed onto it.
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e We conduct an extensive empirical assessment of I&D based on three public datasets and
four existing IDI generation approaches. The results show that I&D can effectively boost
the performance of these approaches in terms of both the number of generated IDIs and the
reduced discrimination after retraining with the IDIs found.

The replication package for this paper, including all our data, source code, and documentation, is
publicly available online at https://anonymous.4open.science/r/fairness-096F/.

2 BACKGROUND

In this section, we first introduce the concept and notation of individual discrimination. Then, we
review the existing IDI generation approaches. Finally, we describe the SHAP value, which is a
commonly adopted model explanation approach.

2.1 Individual Discrimination

Al systems utilise various types of machine learning models, including decision trees [28], regression
analysis [46], and neural networks [37]. Following prior studies on fairness testing [3, 44, 49, 50], we
focus on the binary classification problem, which is important in Al systems [28]. To demonstrate
the generality of our approach, we do not focus on a specific type of machine learning model in
our study. We denote the machine learning model M : X — Y, and it generates a predicted class
label y € Y with the highest probability for a given instance x € X. A = A;, A,, ..., A, represents a
set of attributes (features) in X. Assuming that each attribute A; (i € [1, n]) has a domain value
space of I;, then the total input domain of x is equal to all possible combinations of attribute value
spaces, i.e, I =1; XxIp X ... xI,.

Finding and generating individual discriminatory instances (IDIs) for a given machine learning
model is the first step towards reducing discrimination and achieving individual fairness [3, 44,
49, 50]. Discrimination is frequently described in terms of a group of protected attributes, such
as age, race, and gender. Individual discrimination occurs when a machine learning model makes
different decisions for two identical individuals apart from protected attributes. Note that the list
of protected attributes is often application-specific and unrelated to the prediction goal, which
is provided in advance [50]. Deleting the protected attributes from the training data would not
eliminate the bias, since individual discrimination may remain due to various correlations between
protected and non-protected qualities [13].

Formally, the IDI x of a machine learning model can be defined as follows:

Jp e P,xp, #x,

Vq € NP, x4 = x (1)
flx) # f(x)

where x” exists in I, P C A is a set of protected attributes like race and gender. NP C A is the set of
non-protected attributes, PU NP = A,and PN NP = @.

We use the Census Income dataset as a running example.? Section 4 contains more information
about this dataset. From this dataset, we consider the following two instances x and x’:

x:[3,5,3,0,2,8,3,0,1,2,0,40,0,0], f(x) =0
x":[3,5,3,0,2,8,3,0,0,2,0,40,0,0], f(x") =1

In the list, the attributes of an instance are represented as integers that are the model’s input.
Gender, which is displayed in bold, is assumed to be the protected attribute here. x denotes a male

Shttps://archive.ics.uci.edu/ml/datasets/adult
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Fig. 2. A typical framework for IDI generation.

and x” denotes a female. Except for gender, we can see that x and x” have identical attribute values.
Since the model M has different prediction outcomes f(x) and f(x’), we say that x and x” are a
pair of IDIs for the model.

In summary, machine learning models could make biased decisions for IDIs, which is destructive
to fairness. It is important to effectively generate IDIs and improve the fairness of the machine
learning model through testing and retraining.

Over the years, several IDI generators have been proposed [3, 44, 49, 50]. In Figure 2, we
summarize a typical framework for IDI generation.

Initial seeds. At first, initial seeds are selected from the dataset, which are used in the subsequent
steps for IDI generation.

THEMIS [20] has been the first work to address individual discrimination testing. It chooses
initial seeds at random and then tests if they are IDIs without using a global or local generation
phase. AEQUITAS [44] uses the same random initialization procedure. SG [3], ADF [50], and EIDIG
[49] use K-means to cluster the data. Afterwards, they select initial seeds from each cluster in a
round-robin fashion.The purpose of clustering is to improve the diversity of initial seeds, however,
the initial seeds are still randomly sampled, resulting in only few initial IDIs to be chosen. Aggarwal
et al. [3] investigated the importance of the seed data used by their fairness testing technique SG.
Their results showed that seed data based on the training data set allows for a higher number of
IDIs generated than when using random seeds. To the best of our knowledge, no existing work
tackles the problem of improving the quality of IDIs during the initial seeds phase. We argue that
this phase serves as the foundation for the subsequent global and local generation and is therefore
worth to investigate.

Global generation. Secondly, the algorithm performs a global generation phase to extend from
initial seeds in order to cover the input domain I across a broad range.

AEQUITAS uniformly samples instances and applies a discrimination check to identify IDIs
among them. SG creates a decision tree to approximate the machine learning model under test.
Symbolic execution is used to explore the input domain. ADF adopts gradients to maximize the
difference between the deep neural networks outputs of two similar instances. EIDIG increases the
efficiency of ADF through a memorization technique.

Local generation. Following the global generation phase, the IDIs found are utilised for local
generation, which explores their neighborhood for additional IDIs.

AEQUITAS assumes that IDIs are close to one another in a local domain. The intuition is to add
small modifications to the current IDIs in order to find more IDIs locally. SG examines locality
to evaluate if a small change in the input can influence the model’s judgment. Depending on the
minimal gradient absolute value on each attribute, ADF looks for more discriminatory occurrences
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among the IDIs” neighbors. EIDIG reduces the number of gradient computations performed in ADF
by exploiting prior knowledge of gradients.

2.2 SHAP Value

To gain a better understanding of machine learning models, SHapley Additive exPlanations (SHAP)
[29] is often adopted. SHAP value is a popular black-box model-agnostic interpretable approach,
which utilizes Shapley Values, a game theory-based method, to approximate and explain the
relationship between the input instance and the output prediction. Moreover, SHAP values are
calculated as a consistent measure of feature importance, which is also time-saving in terms of
computation [19]. Specifically, given an input instance x, the model generates a prediction value
f(x), and a SHAP value is assigned to each feature of the instance. Formally, x; denotes the feature
i of the instance x, and xp4s. denotes the base value that is the mean of the target class for all
instances. The output of the model prediction result f(x) can be formulated as follows:

FG) = pase + Y S(x1) (2)

where S(x;) is the SHAP value of the feature x;. For example, we compute the SHAP value* of the
previous examples x and x’ (shown in Section 2.1) based on the decision tree model:

S(x) : [-0.038,-0.014,0.012, —0.191, —0.208, —0.260, 0.006,
—0.001,-0.047,0.021, 0.005, —0.034, —0.008]
S(x") : [0.105,0.070, 0.107, —0.059, —0.191, —0.122, 0.001,

—-0.001,0.181,0.036,0.016,0.103, —0.003]

Note that xp,se = 0.757, indicating the average confidence score of y = 0 predicted labels in
the total instances. In this example, the sum of S(x) and xp4se is 0 (f(x)), whereas the sum of
S(x’) and xpgse is 1 (f(x")). From the SHAP values, we can determine that gender is the greatest
positive feature (0.181) in S(x”). This implies that it has the strongest positive relationship with the
classification result of all attributes in the model. Meanwhile, we also observe that gender shows a
negative relationship (-0.047) with the classification result in S(x).

In this work, the SHAP value is utilized to explain the machine learning model at the instance level.
Other metrics measuring the feature importance (introduced in Section 7) can also be substituted
for SHAP value to explain the machine learning models.

3 THE 1&D APPROACH

In this section, we introduce our proposal, dubbed I&D, for initial IDI generation. Figure 3 gives an
overview of our approach. First, I&D designs a novel IDI initialization component, which leverages
a chiral model to effectively obtain initial IDIs close to the decision boundary of a classification
model (Section 3.1). Then, I&D exploits a diversity improvement component, which combines
the SHAP value and clustering algorithm to select more diverse IDIs from those obtained by the
previous IDI initialization component (Section 3.2). Finally, I&D is integrated with the existing state-
of-the-art approaches, such as AEQUITAS, SG, ADF, and EIDIG, by simply replacing their initial
seed generator (based for example on random sampling or clustering) with the IDIs generated by
I&D (i.e., instead of using their own initial seeds, we feed each of these state-of-the-art approaches
with the initial seeds generated by I&D).

4https://github.com/slundberg/shap
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Fig. 3. Overview of our proposed approach I&D.

3.1 IDI Initialization

To generate initial seeds, we design a novel IDI initialization component based on a “chiral” model.
Chirality is a feature of asymmetry that is important in many research areas [10], such as chemistry,
mathematics, and biology. An object is chiral if it can be distinguished from its mirror image;
that is, it cannot be superimposed onto it. Here we borrow this concept to mutate the protected
attributes of a dataset and train a new model, i.e., the chiral model, which should yield similar
results as the original model. Ordinarily, one would assume for both models (original and chiral),
to make the same predictions. However, due to non-deterministic training procedures of machine
learning models, we are able to detect inconsistent/different predictions among the two models,
which highlight that some of the instances are more difficult to predict and might be prune to cause
inconsistent predictions.

As shown in Figure 3, the IDI initialization component first builds a prediction model, named
original model. Then, it mutates the protected attributes in the dataset to obtain mutated data. This
is a simple step because we only need to alter the values of protected attributes and leave the rest of
the attributes and labels unchanged. For binary protected attributes, one can simply flip the value
from 0 to 1 and from 1 to 0. For other protected attributes, we modify their value from their input
domain at random. Note that we choose random values rather than a permutation of all values in
their input domain, because the mutated data should have the same size as the original dataset.
Furthermore, because some attributes, such as age, have a broad variety of input domain, supplying
every possible value for a protected attribute may lead to a combinatorial explosion.

After mutating the protected attribute, we utilize the mutated data to train a chiral model with
the same structure and hyper-parameters as the original model. These two models are then used to
predict the label of every instance in the dataset. If the prediction outputs are different, the instance
is subject to a discrimination check method. The discrimination check method is conducted in
accordance with the definition of an IDI. An instance is considered individually discriminatory if,
when the values of its non-protected attributes remain unchanged but the values of its protected
attributes are altered across all possible combinations, the predicted labels differ. Since I&D is not
based on a specific machine learning model, I&D treats the machine learning model as a black box.
Thereby, we do not only ensure that I&D finds error-prone, but also discriminative instances for the
use as initial seeds. In our experiments, we also consider a set of all IDIs as initial seeds, without
using chiral models to detect error-prune instances (see Section 4.3 for more details).

To gain insights into why the chiral model is applicable, we adopt the SHAP value to explain the
predictions made by black box models. The SHAP value can intuitively demonstrate the contribution
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Fig. 4. In the original model, the SHAP value between x and x’ is different. The SHAP value of x on the
original model (a) is comparable to that of x” on the chiral model (d). (b) and (c) is similar, likewise. It’s no
surprise that the chiral model on the IDI looks like a mirror image of the original model.

of each feature (of input instances) to the final prediction result. Specifically, we compare the SHAP
values for the same instance predicted by both the original model and the chiral model. Figure 4
illustrates the force plots of the SHAP values for a pair of IDIs (denoted as x and x”). In the axis
above, the bold number (e.g., -0.00 in Figure 4(a)) is the predicted confidence of models. For our
studied binary classification problem, higher predicted confidence leads the model to predict 1 and
lower confidence leads the model to predict 0. Besides, the base value is the mean of the target
class for all instances. The confidence values are sorted from left to right, with the lowest value
being at the left-most position. Below the axis, the SHAP values of features are displayed, with
red bars indicating positive contributions (that push the model confidence higher) and blue bars
indicating negative ones (that push the model confidence lower). Features that have more of an
impact on the predicted confidence are located closer to the dividing boundary between red and
blue, and the size of that impact is represented by the size of the bar. As described in Section 2.2,
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Fig. 5. Comparison of different initialization methods. (a) samples the entire input space for 8 instances; (b)
divides the input space in four clusters and receives 2 instances from each; (c) illustrates /&D, which samples
instances close to the decision boundary of the original model (solid) and the chiral model (dashed).

the actual prediction output is denoted by f(x), which is the sum of all features’ SHAP values
plus the base value. From Figure 4(a) and Figure 4(b), we can observe that, given the pair of IDIs x
and x’, the original model has the different prediction outputs. When comparing the chiral model
to the original model, the SHAP values of IDIs in the chiral model are almost identical to that of
the original model. For example, Figure 4(b) is comparable to Figure 4(c). As a result, the chiral
model’s predicted output differs from the original output. Note that the SHAP value for x on the
chiral model is not the same as x” on the original model. The rank of features in Figure 4(b) and
Figure 4(c) differs. It is important to note that this mirrored relationship of SHAP values between
the chiral and original models is consistent across the dataset and not confined to instances within
specific decision boundaries. This consistency across the dataset suggests that the chiral model
maintains the predictive dynamics of the original model while reflecting a chiral symmetry in
feature contributions.

Qualitative evaluation. In the following, we provide the reader with a theoretical explanation of
how I&D augments and improves existing IDI generation approaches. This is further supported by
the empirical evaluation presented in Section 5.

Existing state-of-the-art or widely-used individual fairness testing approaches (e.g., AEQUITAS,
ADF, SG, and EIDIG) typically rely on either simple random or clustering-based strategies for initial
seed selection, without explicitly exploring how to enhance the quality of IDIs at the initialization
stage. Specifically, the random strategy selects seeds indiscriminately from the original dataset,
lacking focus on potential IDIs. While the clustering-based method improves the diversity of initial
seeds, it still depends on random sampling within clusters, offering limited improvement in selecting
rare IDIs. Given the extreme sparsity of IDIs in the original dataset, both strategies are inadequate
for effectively retrieving them. Moreover, neither approach considers the quality of selected IDIs,
that is, whether the selected seeds contribute meaningfully to improving model robustness.

As shown in Figure 5, we illustrate a sketch map of the three different IDI initialization approaches,
namely Random initialization (shown in Figure 5(a)), Clustering-based initialization (shown in
Figure 5(b)), and our proposed I&D initialization (shown in Figure 5(c)). Each box in this figure
represents the data space in two dimensions. The solid red line denotes the decision boundary
of the original model, while the dashed red line in Figure 5(c) represents the decision boundary
of the chiral model. For the initial seeds, we chose eight instances, marked by circles. The black
circles are IDIs after the discrimination check, while the white circles are data points without
discrimination. Because IDIs have such a small proportion in the dataset, the random selection
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approach is obviously difficult to capture [2]. The clustering-based method divides the data space
into numerous groups and obtains seed instances in a round-robin fashion from each cluster. The
purpose of clustering is to increase the diversity of initial IDIs. Because these cases represent
distinct clusters of the dataset, these approaches may gain more IDIs than random sampling.

Unlike existing approaches, I&D takes into account both the dataset and the model. We develop a
chiral model, indicated as M’ in this figure, that has a different decision boundary than the original
model. As a result, we can explicitly catch initial IDIs by distinguishing predicted outcomes from
the two models. The IDIs found by I&D are thereby bound within the gap between the original
model and the chiral model’s decision boundary. Instances located near the decision boundary,
where small changes in positive instances can turn them into negative instances, require special
attention. IDIs from this region are more likely to reduce bias in the model as these instances are
more prone to being misclassified. With retraining based on IDIs, the boundary can be made more
robust to handle these instances better.

3.2 Diversity Improvement

A desired property of the initial seeds generation is to obtain a diverse set of IDIs. In this context,
we use the diversity of IDIs to capture the diversity in predictions made by a machine learning
model according to attribute feature importance (i.e., we aim to find IDIs that occur for different
reasons). In particular, we use SHAP values (Section 2.2) to determine the feature importance for
predictions made for discriminative instances.

SHAP values are calculated as a consistent measure of feature importance, which is also time-
saving in terms of computation [19]. The model generates a prediction value for each instance, and
a SHAP value is assigned to each feature of the instance.

In accordance with existing approaches for generating diverse IDIs, we also follow a clustering-
based procedure. However, these approaches group the original dataset directly and this practice
might be ineffective because it does not take the prediction model into account. In fact, different
models may have different decision-making strategies on the dataset, and the clustering boundary
may not precisely overlap with the decision boundary, as shown in Figure 5 (b). Therefore, the
diversity of IDIs may not be reflected effectively without considering the original model. On the
other hand, it is challenging to directly assess the diversity of IDIs of machine learning models,
since these models are often difficult to interpret, besides the testing of such models is desired to
be model agnostic, considering them as a black box [3].

Therefore, we design a novel diversity improvement component, which combines the SHAP
value and clustering algorithms. Specifically, we first use the SHAP value to explain the IDIs found
in our designed IDI initialization component, which outputs the SHAP value score of each IDI. Then,
based on their SHAP values, we use DBSCAN [38] to cluster these IDIs. DBSCAN is a powerful
data density-based clustering algorithm that clusters IDIs without the need for specifying the
target number of clusters [30]. IDIs in each cluster are then chosen in a round-robin process to
obtain the higher-diversity IDIs until a specified number of initial seeds is reached. This upper
limit (i.e., search budget) on the number of initial seeds is a parameter adopted by previous studies
[2, 49, 50]. If the budget set ends up to be larger than the number of IDIs actually generated, one
can fill it up by using random sampling.’

5Tt is worth noting that our experiments (Section 5) show that this had not been needed since I&D was always able to
identify more initial IDIs than those required by the search budget. In RQ3 (Section 5.3) we further evaluate the usefulness
of this component for fairness testing and improvement.
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Table 1. Datasets used in this study.

Dataset # Rows # Attributes Protected Attribute
Census 48,842 12 Age, Race, Gender
German 1,000 24 Age, Gender

Bank 45,211 16 Age

We then integrate I&D with each existing IDI generation approach (namely AEQUITAS, SG,
ADF, and EIDIG) by simply replacing their initial seeds with the IDIs generated by I&D, which
makes our approach very straightforward to integrate with existing IDI generator.

4 EMPIRICAL STUDY DESIGN

In this section, we describe the design of the empirical study we carried out to assess the effectiveness
of our proposal for initial seed generation, dubbed I&D.
Specifically, this study aims to address the following research questions (RQs):

e RQ1: How well does I&D perform when integrated with existing IDI generation methods?
e RQ2: How effective is I&D for testing different type of machine learning models?
e RQ3: How do the hyper-parameters of I&D influence its performance?

4.1 Datasets

To evaluate the use I&D, we employ three commonly used datasets in the software fairness litera-
ture [12, 13, 24, 49, 50]. We investigate the following three datasets (with additional information
provided in Table 1):

e Adult Census Income (Census).® Barry Becker retrieved this dataset from the 1994 Census
database. Its objective is to forecast whether a person earns more than $50,000 per year based
on their personal data.

e German Credit (German).” This dataset classifies people described by a set of attributes as
good or bad credit risks.

e Bank Marketing (Bank).® This dataset comes from a Portuguese bank and is used to
estimate if a customer would sign up for a term deposit based on their information.

We pre-process the datasets following the previous work ADF [50] by binning the numerical
attributes. Also, we remove the feature that directly indicates the prediction label.

4.2 Machine Learning Models

Because ADF and EIDIG are only capable of generating IDIs for neural networks, we use the typical
fully-connected neural network following the existing studies as the test model in RQ1 (Section 5.1),
and RQ3 (Section 5.3). We choose hyper-parameters following their respective settings [49, 50].
The number of neural network layers is set to 6, the size of neural network hidden states is set to 30,
20, 15, 10, 5, and 1, respectively. During the training phase, we adopt the binary cross-entropy loss
function, Nadam [15] as the optimizer, 30 training epochs, 128 batch size, and 0.01 learning rate.

Shttps://archive.ics.uci.edu/ml/datasets/adult
"https://archive.ics.uci.edu/ml/datasets/statlog+(german-+credit+data)
8https://archive.ics.uci.edu/ml/datasets/bank+marketing
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For RQ2 (Section 5.2), we build four widely-used machine learning models, i.e., Logistic Regression
(LR), Support Vector Machine Classifier (SVC), Decision Tree Classifier (DTC), and Multi-layer Per-
ceptron Classifier (MLP) following AEQUITAS [2] based on Scikit-learn [32]. The hyper-parameters
are set according to their respective models’ default settings, which we believe have little impact on
the results of our experiments because they can attain reasonably high performance (the average
F1-score is about 89%).

4.3 Baseline

To show the improvement of I&D on existing fairness testing approaches, and the advantage of
using a chiral model for selecting instances that are relevant for discrimination checks, we compare
I&D against a baseline which performs a simpler strategy for selecting initial seeds. Instead of using
the chiral model to filter for instances for which we apply a discrimination check in the datasets,
we propose a baseline that considers all IDIs in the datasets for initial seeds. In accordance with the
procedure of I&D, we first train the original model. Afterwards, we apply a discrimination check
for each instance in the dataset, which inverts the protected attribute and compares predictions
made by the original model. When the number of data instances is unrestricted, the resulting set of
IDIs used as initial seeds in existing fairness testing approaches (AEQUITAS, SG, ADF and EIDIG)
is a superset of the initial seeds selected by I&D. However, when the number of data instances is
limited, the baseline can only select instances randomly, whereas I&D first filters instances using
the chiral model. With this baseline approach, we aim to investigate whether the chiral model can
provide IDIs of higher quality in contrast to simply selecting the IDIs from the data instances. In
the following, we refer to this baseline as “revert”. Although our study primarily focuses on initial
seed selection for individual fairness testing, we also compare our I&D with a state-of-the-art seed
selection technique from fuzzing, namely DiPri [35], to provide a more comprehensive evaluation.
DiPri is a distance-based seed selection approach designed to enhance fuzzing effectiveness (e.g.,
improving code coverage). DiPri assigns a priority score to each seed based on both its distance to
other seeds and its test coverage, and ranks seeds accordingly to form an optimal initial seed set.
To adapt DiPri to the individual fairness testing, we remove its test coverage-based component.

4.4 Implementation

We implemented I&D in Python based on TensorFlow [1] and Scikit-learn [32]. The default €
(distance threshold) and the minimum sample size of DBSCAN is set to 0.09 and 10, respectively [38].
Moreover, we used the public implementations of four IDI generation approaches, i.e., AEQUITAS
[44], SG [3], ADF [50] and EIDIG [49].

We conducted all the experiments on a Linux server with Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz
CPU, 128GB memory, and Ubuntu 18.04 as the operating system.

4.5 Fairness Testing Metrics

The approach proposed in this work aims to improve existing solutions for individual fairness. To
assess the potential improvement of our approach to find initial IDIs, we combine I&D with four
state-of-the-art IDI generation approaches, i.e., AEQUITAS, SG, ADF, and EIDIG, respectively. We
compare these approaches before and after the integration with I&D. In this study, we consider both
effectiveness and usefulness as measures of performance. The count of IDIs has been widely-used
in previous work [3, 44, 49, 50] to evaluate the performance of IDI generation for fairness testing,
and thus we adopted the same metric. Although the count of IDIs is a single measure, it is used in
two different manners.
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The More the Better for Generation (). Our goal for IDI generation is to effectively generate
a large number of IDIs given the computational constraints (“the more IDIs the better”). We set
the limit of initial seeds, and the global and local generation limit both to 100. As a consequence,
100, 100 is the maximum number of the two-phase searched instances (100 global and 100*100 local
instances). We also evaluate the influence of these limits in RQ3 (Section 5.3).

The Fewer the Better After Retraining (|). Following previous work [44, 49, 50], for each IDI
generation approach, we also use its generated IDIs to retrain the original model and then measure
the fairness of the retrained model. We use 5% of the IDIs to augment the training dataset for
retraining [49]. To determine the fairness of a model before and after retraining, we estimate the
percentage of IDIs in the input space I, which captures all possible combination of attribute values
from A = Ay, A,, ..., Ap. The lower the percentage of IDIs the better. Thus, fairness improvements
are indicated by a decrease in the percentage of IDIs in the input space. In accordance with Zhang
et al. [49], we sample 10,000 instances from I, uniformly at random, to determine the percentage of
IDIs. We repeat this procedure 5 times and report averaged results.

We follow the typical practice to evaluate the performance of these machine learning classification
models based on the F1-score. Each dataset was split, with 60% of it serving as the training set and
40% as the test set. During the retraining phase, we add 5% of the generated IDIs into the training
data and keep the parameters of the original model unchanged. The number of epochs is set to 10,
because the loss is steady after retraining for 10 epochs. We experimented with each approach ten
times and averaged the results to limit the impact of randomness. We observe that the F1-score
of these models on the test set remain constant before and after retraining, indicating that these
models are not overfitting on the IDIs. Following ADF and EIDIG, we use the notion of majority
voting to determine the label of created IDIs based on the decisions of several models, i.e., LR, SVC,
DTC, and MLP.

Other metrics [11, 41] exist, but they are not well-suited for evaluating the IDI task. For instance,
generalized entropy indices, such as the Theil index [41], though categorized as individual fairness
metrics, focus on subjective perceptions of fairness. The Theil index attempts to capture how
each individual perceives the fairness of their outcome by defining a benefit function based on
the discrepancy between what the individual deserves and what the algorithm provides. Besides,
metrics like GEI Theil index [22] are rarely used in practice and present challenges, such as the
need to configure benefit values, which vary depending on the context and are often difficult to
determine. Therefore, our study primarily focuses on standard metrics that are widely recognized
and commonly used in fairness testing. These metrics are well-established in the literature, providing
reliable, interpretable, and easy-to-implement indicators of model fairness.

5 EMPIRICAL STUDY RESULTS

In this section, we describe the results of the empirical study as designed in Section 4 to answer
our three RQs.

5.1 RQ1: Performance of I&D

Overall Effectiveness of I&D. The performance comparison between existing IDI generation
approaches and their corresponding variants with I&D is shown in Table 2. Note that “origin” refers
to the original IDI generation approach (i.e., AEQUITAS, SG, ADF, and EIDIG), “revert” denotes
the combination of the original IDI generation approach with the revert baseline (as described
in Section 4.3), “DiPri” denotes the combination of the original IDI generation approach with the
DiPri baseline (as described in Section 4.3), and “I&D” represents the integration of the original IDI
generation approach with our proposed I&D. In particular, I&D contains two main components:
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IDI initialization component and diversity improvement component. To further investigate the
contribution of each component, we constructed a variant of I&D that removes the diversity
improvement component (i.e., “w I”). Besides, Each column in this table represents the number of
IDIs produced for each dataset and protected attribute.

According to these results, we find that all four IDI generation approaches with I&D achieve
superior effectiveness compared to all three compared baselines (i.e., origin, revert, and DiPri) for
all datasets and protected attributes under study. The average number of generated IDIs across all
original approaches is 1, 260, 1, 246 for original approaches combined with the revert baseline, and
1,334 for original approaches combined with the DiPri baseline. In contrast, original approaches
combined with I&D generate an average of 2, 342 IDIs. Specifically, the original approaches combined
with I&D achieve average improvements of 1.86X, 1.88X, and 1.76X over the original approaches
alone, as well as those combined with the revert and DiPri baselines, respectively. We also observe
that among these studied IDI generation approaches, EIDIG with I&D can generate the highest
number of IDIs (3,420 on average). Besides, the number of IDIs generated by AEQUITAS with I&D
is increased by 5.69X and 12.35X compared to AEQUITAS and AEQUITAS with revert, marking the
largest improvement among all the four IDI generation approaches. One possible reason for the
revert baseline’s lower effectiveness is the lower quality of the selected IDIs, which limits the ability
of AEQUITAS’s global and local search algorithms to find additional IDIs in their neighborhood.
These findings significantly demonstrate the effectiveness of our I&D.

We further investigate the contribution of both main components (i.e., IDI initialization com-
ponent and diversity improvement component) in I&D. We observe that “w I” also demonstrates
superior effectiveness compared to all three baselines (i.e., random, revert, and DiPri) across all
datasets and protected attributes. Specifically, the original approaches generate an average of 1, 260
IDIs, while their combinations with the revert and DiPri baselines generate averages of 1, 246 and
1,334 IDIs, respectively. In contrast, “w I” generates an average of 2, 076 IDIs, which is still lower
than the 2, 342 generated by I&D. As a result, “w I” outperforms all three baselines (i.e., original,
revert, and DiPri) but is less effective than I&D. Overall, the results demonstrate that the both
components are important for I&D to improve the effectiveness of IDI generation approaches.

Comparison of IDI Initialization Component. We further compare the IDI initialization com-
ponent of I&D with the original IDI initialization methods used in IDI generation approaches:
Random Sampling (as employed in AEQUITAS) and Clustering-based Sampling (utilized in SG,
ADF, and EIDIG), as well as the IDI initialization components of revert and DiPri baselines. We
set the limit of instances for each protected attribute to 1,000 for the Adult and Bank datasets,
and to 500 for the German dataset, as the dataset only contains 1, 000 instances. In particular, the
revert baseline also employs a random sampling strategy to select 1,000 instances prior to the
comprehensive discrimination check, whereas our I&D utilizes the chiral model to select 1,000
(or 500) instances. After obtaining 1,000 (or 500) instances using each IDI initialization method,
we apply a discrimination check to evaluate the IDI initialization rate (i.e., the percentage of valid
IDIs in these instances). The average IDI initialization rate is then calculated by repeating each
experiment ten times. By comparing these IDI initialization methods, we aim to demonstrate that
I&D can effectively identify individual discrimination before the discrimination check.

Table 3 presents a comparison of the IDI initialization rates among four IDI initialization methods:
Random Sampling (denoted as Random), Clustering-based Sampling (denoted as Clustering), the IDI
initialization component of the revert baseline (denoted as revert), the IDI initialization component
of the DiPri baseline (denoted as DiPri), and the IDI initialization component of I&D (denoted as “w
I). First, the evaluation results show that “w I” achieves superior effectiveness compared to all the
baselines in terms of IDI initialization rate for all datasets and protected attributes studied herein.
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Table 2. RQ1-Effectiveness: Total number of generated IDIs by each of the existing approach with and without
1&D (7).

Approach Census German Bank Average
Age Race  Gender Age Gender Age
origin 359 271 56 1039 261 388 396
revert 345 42 80 468 54 106 183
AEQ. DiPri 614 501 404 456 102 439 419
w1 2982 861 1093 2951 1323 756 1661
1&D 3634 970 1613 3314 1530 2457 2253
origin 186 96 46 324 190 57 150
revert 206 79 99 290 192 21 148
SG DiPri 213 82 87 319 198 62 160
wl 234 115 118 341 223 94 188
1&D 254 138 123 387 243 108 209
origin 2640 883 693 3400 795 3321 1955
revert 3216 660 656 3596 922 3525 2096
ADF DiPri 3379 973 801 3726 879 3682 2240
wl 3941 1537 1956 4998 2744 3906 3180
1&D 4363 1493 1933 5150 3344 4636 3487
origin 3788 1295 1103 3854 1082 4116 2540
revert 3789 1202 1021 4458 1015 3855 2557
EIDIG DiPri 3593 1237 1390 3933 969 3972 2516
wl 3974 1308 1988 4868 3185 4319 3274
1&D 4637 1408 1869 5030 3204 4371 3420

* AEQ. is short for AEQUITAS.

In particular, the average IDI initialization rate of “w I” is 65.6%, while the other three approaches
(i.e., Random, Clustering, Revert, and DiPri) are just 8.1%, 9.3%, 9.2%, and 10.7%, respectively. In
addition, the IDI initialization rate for “w I” ranges from 41.5% to 78.3% across all datasets and
protected attributes, suggesting that I&D has consistent high initialization effectiveness. This is
because Clustering and DiPri accounts for the characteristics of the dataset, whereas Random and
Revert do not. In contrast, “w I” considers the characteristics of both the model and the dataset.
In fact, we train a chiral model by mutating the protected attributes of the dataset. By comparing
the original and chiral models, we can explicitly extract individual discrimination before the
discrimination check. Therefore, existing IDI initialization methods that do not account for model
characteristics do not perform well for IDI initialization. The IDI initialization component of our
I&D is the first attempt to overcome this problem, and our findings indicate that it is a promising
approach.

The last row in Table 3 shows the running time of Random, Clustering, Revert, DiPri, and “w I”.
We observe that Random and Revert require the least amount of time (0.001 seconds), Clustering
requires 0.002 seconds, DiPri requires 0.859 seconds, whereas our “w I” takes 2.692 seconds on
average. This can be explained by the training of the chiral model, which is as expensive as training
the original model. In our case, additional time consumption is within the range of a few seconds,
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Table 3. RQ1-Initialization: The IDI initialization rate (T) and running time (|) comparison based on 1000
selected instances.

Dataset  Protected Attribute ‘ Random  Clustering Revert DiPri wl
Age 13.8% 16.4% 14.0% 16.5% 78.0%
Census Race 2.9% 4.3% 4.0% 3.9% 70.3%
Gender 3.3% 3.8% 6.6% 3.4% 78.3%
German Age 18.8% 19.4% 19.1% 25.8% 61.6%
Gender 8.2% 8.8% 8.2% 9.6% 63.8%
Bank Age | 18% 3.1% 30%  48%  41.5%
Average | 8.1% 9.3% 92%  107%  65.6%
Running Time (s) (1) | 0.001 0.002 0.001  0.859  2.692

but is also acceptable for larger models, as the training needs only be performed once, which can
be done offline.

Usefulness of I&D. To show the usefulness of I&D, we leverage the generated IDIs to retrain
the original model to mitigate the bias and investigate whether retraining leads to a fairness
improvement. Specifically, we use 5% of the IDIs generated by each approach to augment the
training dataset for model retraining. To measure the fairness of a machine learning model, we
sample the entire input space I, uniformly at random, to determine the percentage of IDIs when
making predictions with the model (see Section 4.5 for more details). This is performed before and
after retraining with the IDIs found before (see Table 2).

Table 4 illustrates these results. The “Before” row indicates the IDI percentage for each dataset and
protected attribute before retraining, proceeding rows show the IDI percentage after retrained with
the corresponding approach (i.e., AEQUITAS, SG, ADF, and EIDIG) and initial seed strategy (i.e., the
original approach, the revert baseline, the DiPri baseline, and our I&D). The average F1-score on
the test set remains similar over all approaches, ranging from 87.6% to 89.2%, which indicates that
the retrained models are not overfitting on the generated IDIs. In particular, the average percentage
of IDIs remained is 8.3% for the original approaches, 8.6% for approaches with revert, and 8.2%
for approaches with DiPri, while IDI percentage of approaches with I&D is 6.3%, representing
reductions of 24.9%, 27.3%, and 23.2%, respectively. Therefore, I&D, on average, is better than the
baseline approaches.

Furthermore, we investigate the contribution of each component in I&D. For the first IDI initial-
ization component component, we compare “w I” with the original, revert, and DiPri baselines.
To compare these approaches, we investigate the number of remaining IDIs after retraining the
neural network model by them. More specifically, “w I” has 1.1%, 1.4%, and 1.0% fewer remaining
IDIs on average across all datasets than the original, revert, and DiPri baselines, respectively. This
result indicates that the IDI initialization component in I&D can improve the model’s fairness due
to the higher-quality IDIs obtained by the chiral models. For the second diversity improvement
component, we further compare I&D with “w I”. From these results, we observe that I&D has
fewer remaining IDIs than “w I” in almost all cases (with only four exceptions due to the potential
randomness of experiments). For the exceptional cases, “w I” just has slightly 0.4% fewer remaining
IDIs than I&D on average. In particular, on all other cases, I&D has 1.2% fewer remaining IDIs than
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Table 4. RQ1-Usefulness: Percentage of discriminative instances in the input space I, before and after retraining
(1). The best configuration for each approach and dataset is highlighted in bold. Variance over 5 runs is

reported (+).

A h ‘ Census ‘ German Bank ‘ F1-
pproac | Age Race  Gender | Age Gender | Age | score
Before | 146203 13.2£0.2  6.2+£0.1 | 24903 83+0.2 | 11.8+03 | 883

origin | 15.6+02 10.9+0.2 8.2+0.1 | 6401 4301 | 6102 | 876
revert | 114+03 12.6£02 55+02 | 8.0+02  6.6+02 | 50+0.1 | 87.8
AEQ. DiPri | 11.6+0.2  9.940.2 59402 | 6.4+0.1  56+0.3 | 51+0.2 | 87.8
wl 109402  8.6+02 3.1+02 | 6.8+02 35+02 | 4602 | 87.8
I&D | 9.6+0.1 8.0+0.3 2.8+0.2 | 4.2+0.1 3.1x0.2 | 4.5+0.1 | 88.0
origin | 10.1£0.2 105+0.1 58402 | 11.7£0.2 92403 | 12.0+0.2 | 88.0
revert | 14.2+02 103+0.1 7.9402 | 16102 82403 | 11.2+0.3 | 883
SG DiPri | 137402 117401 6.6£0.1 | 14303 83+0.1 | 11.4+02 | 88.0
wl 128403 11301 4.2+£02 | 11.8+0.2 6.0+02 | 11.0£0.1 | 87.9
I&D | 8.0+0.2 9.3+0.1 4.1x0.2 | 9.1+0.2 55+0.1 | 10.5:0.3 | 83.1
origin | 105+0.2  8.8+0.3  4.2+0.1 | 67+03 4402 | 6.8+0.1 | 89.2
revert | 11.1+02  75+02  53+0.1 | 48+02 59403 | 7.0£03 | 89.0
ADF  DiPri | 11.3£0.1  81£0.2 3.8+0.1 | 4.6+0.2 5702 | 6701 | 89.0
wl 8.9+£0.2  7.24£0.2 2.920.1 | 4.3£0.2 67+0.1 | 6.5£02 | 89.1
I&D | 7.74#0.2 79403  3.2£0.1 | 44201 4.1+0.2 | 5.60.2 | 89.0
origin | 131202  9.5+0.2  53+0.1 | 67+0.2 4.4+0.1 | 8703 | 889
revert | 127402 10.2£0.1  5.0£0.1 | 6402  6.3£0.1 | 7.2x02 | 886
EIDIG DiPri | 12.8+0.2 9.7£0.1  47+02 | 7.1£03 5702 | 6903 | 889
wl 127402  8.6+03 3.6£0.1 | 57+02  49+02 | 67+02 | 89.0
I&D | 11.440.1 8.3+0.2 41£02 | 45+0.1 51+0.1 | 51+0.1 | 89.1

* AEQ. is short for AEQUITAS.

“wI” on average across all the datasets and IDI generation approaches. This result indicates that
I&D can improve the model’s fairness due to a diverse set of IDIs. Overall, the results demonstrate

that the both components are important for I&D to improve model’s fairness.

Answer to RQ1: The use of I&D improves the average number of IDIs by 1.86X for AE-
QUITAS, SG, ADF, and EIDIG, as opposed to not using I&D. Furthermore, after retraining
with the IDIs generated by I&D, the percentage of IDIs in the input space I is decreased by
24.9% on average, implying that I&D is effective for improving the model’s fairness. Besides,
both the IDI initialization and diversity improvement components make contributions to
the overall effectiveness of I&D, demonstrating the necessity of each of them.
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Fig. 6. RQ2: Comparison of number of IDIs generated (a, b) and remaining after retraining (c) using different
models. Results are averaged over the three datasets and protected attributes. AEQ. is short for AEQUITAS.

5.2 RQ2: Testing Different Models

To further investigate the effectiveness of I&D with different machine learning models, we choose
representative AEQUITAS with I&D for experiments because SG is not efficient [50] and the ADF
and EIDIG approaches are both aimed only at neural network models.

The results of AEQUITAS with or without using I&D for different machine learning models are
shown in Figure 6. Specifically, Figure 6(a) and Figure 6(b) illustrate the global generation and local
generation comparison, respectively. From these figures, we can observe that AEQUITAS with I&D
significantly outperforms the original AEQUITAS for all four models (i.e., LR, SVC, DTC, and MLP).
The average number of IDIs generated by AEQUITAS with I&D during the global generation phase
is 87, compared to just 6 with the original AEQUITAS, representing a 14.50X increase. Note that
the initial seeds are used directly in the global generation phase of AEQUITAS, meaning that the
IDI initialization component of I&D is more effective than the random sampling. In terms of the
local generation phase, the average number of IDIs generated by AEQUITAS with I&D is 1, 967,
whereas the original AEQUITAS is 266, an improvement of 7.39X. In particular, the LR model has
the highest number of IDIs improvement (87 in the global phase and 2, 359 in the local phase on
average) among all models, while the SVC model has the smallest number of IDIs improvement (89
in the global phase and 1, 190 in the local phase on average). The simplest of these four machine
learning models is LR, which takes into account the linear relationship between features and the
prediction objective.

While I&D is able to increase the number of IDIs generated by AEQUITAS in the global and
local generation phases, by 14.50X and 7.39X respectively, we note that the increase in the global
generation phase is almost twice as high as in the local phase. A potential reason for this can be
seen in the creation of duplicated IDIs without I&D, as the local search explores the neighborhood
of fewer seeds.

The number of remaining IDIs after model retraining is shown in Figure 6(c). Note that the
retraining procedure is similar to that described in Section 5.1. According to this figure, the number
of retraining IDIs has decreased dramatically from AEQUITAS with I&D to the original AEQUITAS,
regardless of models. Specifically, after retraining using IDIs generated by the original AEQUITAS,
the IDIs remained are 1, 673, whereas with I&D is just 816, a 51.2% decrease. The LR model has the
greatest number of IDIs drop (1,014 on average) among all models, whereas the SVC model has the
least number of IDIs decline (534 on average).
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Fig. 7. RQ3: The average number of generated IDIs (red) and the average number of remaining IDls after
retraining with the same IDIs (blue) by AEQUITAS with I&D under different values for the maximum number
of initial seeds.

Answer to RQ2: Regardless of the machine learning model, I&D can significantly enhance
the IDI generation approach to generate more IDIs, with an improvement of 14.50X on
average. Moreover, I&D can also help models further reduce the number of IDIs after
retraining, with a 51.2% reduction on average.

5.3 RAQ3: Hyper-parameter Sensitivity

The only hyper-parameter of I&D is the maximum number of initial seeds. Intuitively, the number
of generated IDIs depends on the maximum number of seeds for the generating phases, which
include initial seeds, global and local generation limits [44, 49]. In line with previous work [44],
we set the number of initial seeds and global generation limits to be the same. This is because the
global generation phase utilizes these initial seeds as input (see Figure 2). If the maximum number
of initial seeds is less than the global generation limit, random sampling would be needed to fill the
gap, which would not accurately evaluate our I&D. Conversely, if the maximum number of initial
seeds exceeds the global generation limit, only a subset would be used, also leading to an inaccurate
evaluation of hyper-parameter sensitivity. Therefore, we set identical limits for initial seeds, global
and local generation (consistent with RQ1). To answer RQ3, we examine the average number of
generated IDIs and the average number of remaining IDIs after retraining with the same IDIs, as
the maximum number of initial seeds ranges from 10 to 400 (see Figure 7). The average number
of IDIs generated by AEQUITAS with I&D is shown by the red line with error bound. The blue
line depicts the average number of remaining IDIs after retraining with the same IDIs. Note that
since both model retraining and post-retraining testing use the same generated IDIs, the maximum
number of remaining IDIs cannot exceed the number of generated IDIs. Consequently, the blue line
will always be below the red line. The number of generated IDIs increases dramatically, because
the search space expands exponentially as the limit rises (from 1010 to 160400). The number of
remaining IDIs increases slower than the number of generated IDIs because retraining the model
with more IDIs can reduce bias even further. We do not set a higher limit because the generating
time of the AEQUITAS also rises exponentially as the limit increases. When the limit is 400, it will
take more than 14 hours to execute IDI generation on a single protected attribute. I&D, on the
other hand, is efficient in handling higher limits. Given the limit is 1000, it only takes 2.692 seconds,
as shown in Table 3. In the future, we will further explore the effect of varying one parameter
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while keeping others constant (e.g., the number of initial seeds, global generation limit, and local
generation limit).

Answer to RQ3: The maximum number of initial seeds, as well as global and local generation
limits, influence the final number of generated IDIs. As the limits increase, the number of
generated IDIs and generation time increase dramatically, whereas the number of remained
IDIs after retraining increase slower.

6 THREATS TO VALIDITY

We evaluated I&D with three datasets. They are the most common public benchmarks used in
the fairness testing literature. However, further datasets could be considered for future work to
strengthen our results. Furthermore, the generated IDIs lack ground-truth labels and rely on voting
from multi-model prediction outputs [26]. When retraining the model with more produced labels
than its initial dataset size, the model may not be helpful. Moreover, I&D is open-sourced and
dataset-independent. If more datasets become accessible in the future, it will be simple to expand
our analysis.

The machine learning models used to conduct our experiments are also used in prior studies,
such as AEQUITAS [44] and ADF [50]. Because the datasets are simple, with a maximum of 16
features, basic models like fully-connected deep neural networks can handle them. Our approach,
on the other hand, is broad and does not rely on any specific models. Since the main idea of I&D is
to train a chiral model and compute SHAP values to cluster, which is straightforward to implement
even for more sophisticated models.

7 RELATED WORK
7.1 Fairness in Software Engineering

Fairness is a critical non-functional testing property of data-driven applications and machine
learning software [48]. As such, it has received an increasing attention from both the software
engineering [9, 13, 23, 47] and machine learning research communities [6, 43]. Among others,
Brun et al. [9] named this “software fairness” and called for software engineers to combat such
discrimination and build fair software. Since then, fairness concerns have been addressed in different
stages of the software development process [40]. In addition to software testing [14], fairness with
regards requirements [18] and the design of fair algorithms [13] have been investigated. Fair
design approaches have been introduced in various stages of the development process, including
pre-processing, in-processing, and post-processing [8, 12, 31, 47]. Fairkit [22, 27], Al Fairness 360
[43], and Fairea [24] aim to mitigate bias. Our study complements these methods for detecting and
mitigating bias.

7.2 Individual Discriminatory Testing

Various types of approaches have been proposed for fairness testing of machine learning models in
the past few years. THEMIS [5, 20] first defined software fairness testing in terms of individual
discrimination. However, THEMIS is inefficient because it relies on random sampling without
generating IDIs. AEQUITAS [44], SG [3], ADF [50] and EIDIG [49] are a series of IDI generation
frameworks. A detailed description of these approaches is presented in Section 2.1.

To allow for an interpretability for discrimination found in deep neural networks, Zheng et
al. [51] proposed the fairness testing framework NeuronFair. NeuronFair is able to detect biased
neurons in the different layers of deep networks by measuring the differences in their activation
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for instances with different protected attribute values. A high difference in neuron activation for
such instances indicates that a neuron is biased.

Another possibility for generating IDIs, is the use of search-based methods, such as genetic
algorithms [17, 33]. For example, Fan et al. [17] first used model explanation techniques (see Section
7.3) to find initial seeds, which are then used as a starting point for a genetic algorithm to find IDIs.
Perera et al. [33] used genetic algorithms for fairness testing when dealing with a regression based
problem (i.e., predicting waiting time for emergency departments). Given an initial population
of randomly generated instances, the genetic algorithm was designed to find instances which
maximizes the difference in predictions for instances that only differ in protected attributes.

They concentrate on generating IDIs effectively and efficiently in the global and local generation
phases but overlook the importance of the seed selection phase for improving fairness testing
results. To fill this gap, in this work we have proposed a novel way to generate initial seeds, which
is able to further improve IDIs effectiveness and diversity. Our work is orthogonal to previous work,
as it can be applied to existing IDIs generator by simply replacing their own initial seed generation
strategy.

7.3 Model Explanation

In addition to SHAP [29] there exist other model explanation techniques. For example, Local
Interpretable Model-agnostic Explanation (LIME) illustrates the model with a decision tree-like
structure. Decision rules [4] are approaches that are easily understood by humans. However, they
are only useful when they have human-reasonable size. In this work, we require an explanation
approach at instance level to calculate feature importance [21, 52]. The Shapley value [36] is the
foundation for various approaches that credit a machine learning model’s prediction on an instance
to its underlying features. The Shapley value can be calculated using a variety of algorithms [42],
from which we choose the SHAP value [29], since it is capable of efficiently explaining a wide
range of models.

8 CONCLUSION

Fairness testing can be used to detect individual discriminating instances (IDIs) and asses an Al
system’s fairness. In this paper, we have proposed a novel initialization approach for fairness testing,
I&D, to aid in the initial phase of IDI generation. I&D compares the prediction output between the
original model and a chiral model and uses the SHAP value to improve the diversity of IDIs. The
usefulness of I&D was demonstrated through an empirical study on three widely-used datasets
for fairness testing research. The average number of IDIs generated by using our I&D approach
achieves improvements of 1.86X and exceeds that of the existing approaches. Furthermore, we
discover that by utilizing the generated IDIs to retrain the model and test IDIs again, the remaining
IDIs are reduced by 24.9%, thus outperforming other approaches. We also show how the fairness
of widely-used models like Logistic Regression, Support Vector Machines, Decision Trees, and
Neural Networks can be improved by using I&D. The contributions of the key components are also
supported by our experiments. Overall, the results show that the initial seed phase is an important
step in the fairness testing procedure, for increasing the number of generated IDIs and proceeding
fairness improvements, and should receive more attention.

In future work, we aim to investigate additional methods for selecting initial seeds for compar-
isons with the chiral model. While the focus of I&D is individual fairness, in particular counterfactual
fairness (i.e., treating individuals with different protected attributes equally) [11], one could investi-
gate the impact of fairness testing and retraining on other fairness definitions (e.g., group fairness
metrics and non-classification tasks). Moreover, I&D could be applied to datasets of different
domains (e.g., textual [17] and visual [51]).
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