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ABSTRACT
Due to its ease of use and wide range of custom libraries, Python has
quickly gained popularity and is used by a wide range of developers
all over the world. While Python allows for fast writing of source
code, the resulting programs are slow to execute when compared
to programs written in other programming languages like C. One
of the reasons for its slow execution time is the dynamic typing
of variables. Cython is an extension to Python, which can achieve
execution speed-ups by compiler optimization. One possibility for
improvements is the use of static typing, which can be added to
Python scripts by developers. To alleviate the need for manual effort,
we create Py2Cy, a Genetic Improvement tool for automatically
converting Python scripts to statically typed Cython scripts. To
show the feasibility of improving runtime with Py2Cy, we optimize
a Python script for generating Fibonacci numbers. The results show
that Py2Cy is able to speed up the execution time by up to a factor
of 18.
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1 INTRODUCTION
Python is a high-level, general purpose programming language [43]
used by a variety of developers, ranging from non-experts to ad-
vanced programmers [39]. Nowadays, Python is popular in several
application domains, among others the scientific computing com-
munity [6, 31], due to its ease of use, dynamic typing, and wide
range of custom libraries.

The advantage of a high-level programming language, such as
Python, is an enhanced productivity which simplifies code writing
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and prototyping [3, 6, 31]. Dalcin et al. [12] went as far as to argue
that Python “become de facto standard for computation-driven
scientific research”.

While Python allows for fast prototyping and writing of source
code, the resulting programs often lack fast execution time [39].
Features, including dynamic typing and automatic memory man-
agement, come at the cost of a reduced performance and slow
execution times [41].

1 def factorial(x):

2 y = 1

3 for i in range(x):

4 y *= i+1

5 return y

Listing 1: Python Code.

1 cdef int factorial(int x):

2 cdef int y = 1

3 cdef int i

4 for i in range(x):

5 y *= i+1

6 return y

Listing 2: Cython Code.

Normally, Python uses CPython as its source code interpreter
to transform Python code into bytecode [38]. One approach for
improving the execution time of Python programs is the use of
custom interpreters that are closer to the compiler language C
and can therefore be executed faster than CPython [9]. Cython
is a popular example of such an approach, which is designed to
achieve C-like runtime performance for code written in Python
with optional additional C-inspired syntax, thereby allowing for
speed-ups of Python programs [45].

While Python programs can be transformed into Cython without
changes to the source code, further improvements can be achieved
by including Cython constructs such as static typing of variables,
which can then be resolved at compile-time rather than runtime [7,
45]. An example Python script is shown in Listing 1 and its corre-
sponding Cython version is shown in Listing 2. Both scripts are
used to compute the 𝑓 𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 of a number 𝑛 with the only differ-
ence being that the Cython code specifies that the variables 𝑥,𝑦, 𝑖
as well as the output 𝑦 are integers. To distinguish Cython from
Python scripts, Cython scripts use the file ending .pyx while Python
use .py (e.g., Listing 2 could be named factorial.pyx). This code mod-
ification can reduce the running time of the program yet requires
the intervention of a developer to be made. For this small example,
the developer manual effort is trivial, however it becomes more and
more demanding for larger real-world programs.

To combine the ease of building software, which Python offers,
with a fast execution time, we propose Py2Cy, a tool for automating
the process of converting Python to Cython programs. In particular,
we aim at automatically incorporating Cython specific features,
such as static-typing, in the source code of Python programs. By
doing so, developers can focus on writing functional Python code,
which then is converted to faster Cython programs without any
manual effort.
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For this purpose, we use Genetic Improvement [24, 25], a Search
Based Software Engineering [20] technique proposed to automati-
cally adapt source code in order to improve its non-functional prop-
erties. In the past, GI has been used to improve software intended
for a variety of tasks, including data mining, financial modeling and
image processing [32]. Moreover, GI was successful in reducing the
execution time of programs [26, 33].

To summarise, the main contributions of our work are:
• the first proposal to speed up Python programs running time
by using GI;

• Py2Cy, an automatedGI tool for converting Python to Cython;
• a feasibility study of the proposed tool;

The Py2Cy source code and our experimental data is publicly
available to allow for reproduction and extension of our work:
https://github.com/SOLAR-group/Py2Cy.

The rest of the paper is organized as follows. Section 2 pro-
vides the reader with an overview of the existing work in this area.
Section 3 provides some background on Cython and presents our
proposed tool Py2Cy. The experimental design and results are de-
scribed in Section 4. Following, Section 5 concludes the paper and
gives some recommendations for future work.

2 RELATEDWORK
In this section, we present related work on approaches for speeding-
up Python programs. Additionally, we outline existing work on
Genetic Improvement, including techniques that have been applied
to improve Python programs.

2.1 Speeding-up Python
Python is a high-level programming language that trades execution
time in favour of ease to use. To combat this shortcoming, several
approaches have been applied [29].

Among others, the execution time of Python programs has been
reduced by the use of parallelization [14, 39]. For example, Jacob
and Singer [23] proposed an automated framework to enable the
parallelization of loops and achieved speed-ups over the native
Cpython interpreter of Python programs.

Garg and Amaral [15] achieved speed-ups by executing selected
parts of Python program on the GPU instead of running the en-
tire program on a CPU. For numeric and scientific problems, high
performance libraries, such as NumPy, SciPy and Theano can be
used [21, 42, 44]. These libraries provide Python APIs which imple-
mented functions in C or C++ [6].

Furthermore, several compilers have been proposed in the past,
which provide a faster compilation time than the native CPython
interpreter [2, 17, 34, 41]. In addition to the proposal of new Python
interpreters, several benchmarks exist to compare their perfor-
mance [2, 30, 36, 38]. PyPy [37] is a popular Python implementation
written in RPython, which is statically compiled and adds features,
such as garbage collection and a Just-in-Time compiler [29]. An-
other popular extension for Python is Cython, which allows for
an extension of Python with C data types and will be the focus
of our experiments. More information on Cython is provided in
Section 3. Our work is the first to propose the use of Genetic Im-
provement to speed up the execution of Python programs as a
means of automated program translation from Python to Cython.

2.2 Genetic Improvement
Genetic Improvement (GI) is a Search Based Software Engineer-
ing (SBSE) [20] technique which applies modifications to program
source code to achieve improvements of non-functional and func-
tional properties. Frequently, programs are changed by deleting or
replacing existing, or inserting new source code lines [11, 26, 27]. GI
has been successfully applied to large range of domains [32] to re-
duce programs execution time [26, 33], memory consumption [46],
and energy consumption [11].

Langdon and Harman [26] applied GI to a DNA sequencing sys-
tem and found variants of the program that could operate 70 times
as fast as the initial program without deterioration in functionality.
In particular, mutations have been applied to lines of codes that are
executed frequently when running the program.

In contrast to work which applied GI to programs offline and
transfer improvements to live systems later on, Haraldsson et
al. [19] integrated GI in live system (Janus Manager) which allowed
for continuous self-improvements. During daytime, when users
access the systems, interactions are recorded and collected, such
that GI can improve the systems afterwards, based on caught ex-
ceptions. Ultimately, developers decide which patches to integrate,
which simplifies maintenance.

To support practitioners, tools have been provided. One example
for this is Gin, a toolbox for GI experiments for the Java ecosys-
tem. Gin can be used to automatically transform and test Java
projects [10]. GenProg is a tool that can be used for automated
program repair [28]. Program variants are evolved and evaluated
against existing test suites to retain functionality and resolve de-
fects. An et al. [4] created the tool Python General Framework
for Genetic Improvement (PyGGI), to allow for an easy use of GI
techniques for multiple programming languages, such as Java, C,
or Python. They showed, in cases studies, that PyGGI is able to be
used for program repair and the improvement of non-functional
performance characteristics, such as running time. In addition to
lexical modification (i.e., physical lines of program source code),
Version 1.1 of PyGGI supports syntactic modification of Python (i.e,
modification of statements in the Abstract Syntax Tree) [5]. Version
2 enabled XML-based intermediate program representation for C,
C++, C and Java programming languages [3].

Ackling et al. [1] proposed pyEDB (python evolutionary debug-
ger), a method for automated repair of Python programs. They
represented Python programs as Abstract Syntax Trees and applied
modifications to repair two types of defects: incorrect relational
operators (<, , >, , ==), and incorrect variable names.

Haraldsson et al. [18] applied GI to repair three small Python
programs and investigate the relation between fitness (number of
tests passed) and number of incremental changes to the program.
Frequently, the fitness of programs did not change after a single
mutation of the programs.

Unlike existing work for GI on Python [1, 18], we do not intend
to use GI for improving functional performance of Python apps
(e.g., fixing bugs) but aim to speed-up execution times. In particular,
we use GI to convert Python to Cython programs and integrating
statistical typing (i.e., inserting new lines of code).
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3 PROPOSED APPROACH
In this section, we first give an overview of the Cython interpreter,
and then explain how we realised Py2Cy using GI to automatically
convert Python programs into Cython ones. At first, we outline the
program representation and then operators to adapt the program.

3.1 Cython
Cython is an extension to Python, which provides a programming
language and an optimized compiler [38]. Cython extends Python
with access to C data types and functionalities [12]. Using features
such as static typing of variables, the execution time of Python
programs can be sped-up, because the interpreter does not need to
determine variable data types anymore [38].

Generally speaking, Python code is already valid Cython code, as
Cython is a superset of the Python programming language [38, 45].
Any part of the code that Cython cannot determine statically is com-
piled with Python semantics instead. Therefore, Python code can be
executed by the Cython interpreter, but it can also be extended with
Cython constructs to achieve performance improvements [45]. Ac-
cording to the Pareto Principle, most computer programs spend 80%
of the run-time executing only 20% of the code [16], so editing small
parts of the program can in theory achieve drastic improvements.

The cdef statement can be used to define local and module level
variables. They can also be used to declare any C datatype, including
the standard ones: char, short, int, long, long long as well as their
unsigned versions, bint (boolean) and pointers. In addition to this, it
can also be used to include user-defined extension types. Functions
that are declared using cdef can take either Python object or C
values as parameters and also return either Python object or C
values. Lastly, cpdef is a hybrid function between Python’s def and
Cython’s cdef, allowing both Python and C functions to call it.

To run the Cython code, it needs to first compile into a C/C++
file. It then compiles the C/C++ file into an extension module which
is directly importable from Python.

3.2 Cython Syntax Tree
Cython parses its source code into an Abstract Syntax Tree (AST)
during the compilation process, with each node representing a
specific syntax, language feature or certain operation for code gen-
eration. Although the AST’s structure andmethods are not intended
for public consumption in the current iteration of Cython, it can
be accessed using its compiler source code libraries. Every node in
the AST extends from the base Node type, where the root of each
tree is a Module node and each node contains a “child attributes”
variable defining its child nodes. A sample code snippet of Cython
code and its AST are shown in Listing 3 and Listing 4. Notably, all
nodes representing segments of code that can be statically typed
also have an equivalent untyped node with a different name and
structure, with the exception of the method argument node. When
the Cython AST is generated from pure Python code, all nodes will
use the untyped version. The equivalent typed and untyped nodes
of each language feature can be seen in Table 1.

The conversion from Cython code to a visual form of its AST
can be seen between listings 3 and 4. We can see that each script
starts with the root ModuleNode, and each inner scope is defined
by a body. In addition, the positions are given for each node in the

Code Feature Untyped Node Typed Node
Method Definition DefNode CFuncDefNode
Method Arguments CArgDeclNode CArgDeclNode
Variable Declaration ExprNode CVarDefNode
Unassigned Variable ExprStatNode CVarDefNode

Table 1: Untyped and Typed node names

form 𝑝𝑜𝑠 = (𝑛𝑎𝑚𝑒 : 𝑟 : 𝑐), where 𝑛𝑎𝑚𝑒 is the name of the file, and
𝑟 and 𝑐 are the row and column of the node’s position in the file.
The AST also depicts how each typed node has both a base-type
node and a declarator child node as its attributes, seen in line 2
and 3 of Listing 4. The base-type node is for assigning a type and
the declarator is used to define the name of the method or variable.
There is also a variable assignment in Line 2 and an undeclared
variable in Line 3 of the Cython code in Listing 3 that translates to
lines 10-16 of the AST. StatListNodes are nodes that store all the
variable declarations that are in a group within the same scope. As
seen in line 13 of the AST, an additional default value is given to a
variable that has been assigned .

1 cdef long factorial (int x):

2 cdef long a = 0

3 cdef long b

4 ...

Listing 3: Cython Code Sample

1 - (root): ModuleNode(pos=(fib :1:0))

2 - body: CFuncDefNode(pos=(fib :1:5))

3 - base_type: CSimpleBaseTypeNode(pos=(fib :1:5))

4 - declarator: CFuncDeclaratorNode(pos=(fib :1:19))

5 - base: CNameDeclaratorNode(pos=(fib :1:9))

6 - args [0]: CArgDeclNode(pos=(fib :1:20))

7 - base_type: CSimpleBaseTypeNode(pos=(fib :1:20))

8 - declarator: CNameDeclaratorNode(pos=(fib :1:26))

9 - body: StatListNode(pos=(fib :2:4))

10 - stats [0]: CVarDefNode(pos=(fib :2:9))

11 - base_type: CSimpleBaseTypeNode(pos=(fib :2:9))

12 - declarators [0]: CNameDeclaratorNode(pos=(fib

:2:14))

13 - default: IntNode(type=<CNumericType long >)

14 - stats [1]: CVarDefNode(pos=(fib :3:9))

15 - base_type: CSimpleBaseTypeNode(pos=(fib :3:9))

16 - declarators [0]: CNameDeclaratorNode(pos=(fib

:3:14))

17 ...

Listing 4: Cython AST Sample

All modifications to the tree are performed using tree visitor
transforms. To create custom modifications to the tree, the visi-
tor class supplied can be extended from. The visitor will match
the visitor methods for each node using its name in the form:
visit_exampleNode, where example is the name of the specific node
class. In addition, there are also helper methods to easily convert
the source code to and from its AST representation.

3.3 The Py2Cy Tool
This section outlines our Py2Cy tool, which follows a procedure
inspired by PyGGI [3, 4] and GIN [10], as illustrated in Figure 1.

Py2Cy first converts a Python script into its AST as an intermedi-
ate representation and performs type injections before converting
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it back into source code. It then attempts to compile the code dy-
namically and run it to test its runtime and output. To implement
type injection, the file is first preprocessed so that new cdef dec-
laration nodes (CVarDefNode) are created for every variable name
and inserted into their respective scopes. These declarations act as
the possible modification points for the type insertions. Once the
position of the node and the new type is chosen, the visitor class
visits the tree to find and edit the appropriate node and the type
is modified by changing the CSimpleBaseTypeNode attached that
that node. Once the patch is complete, the new AST is written to a
temporary .pyx file.

To compile the code, the tool uses the subprocess module to
spawn an intermediate shell process and run the “Cythonize” com-
mand on the .pyx file. This compiles it into a C/C++ file and then
compiles the C/C++ file into an extension module which is directly
importable from Python. If the code compiles, then it is dynamically
imported into the code and run to test its run time speed, intended
output value and other metrics. Once the patch is evaluated, another
patch may be created based on the results.

Figure 1: Py2Cy Pipeline

4 EXPERIMENTS
In this section, we describe the feasibility study we have carried out
to assess whether our proposed tool, Py2Cy, can be used to reduce
the running time of Python code by using Cython and static typing.
In particular, we aim to answer the following research question:

To what extend Py2Cy is able to improve the runtime of
Python programs?

To answer this question, we consider a small program (see Sec-
tion 4.1) and perform a search (see Section 4.2) to generate Cython
variations of the same program with additional static typing.

4.1 Program to Optimize
This section presents the Python program we aim to optimize in
our experiments.

While C scripts have been used for evaluating GI for improving
runtime [3], we could not find suitable Python benchmarks for run-
time improvements. Therefore, we selected a program to optimize
according to two criteria: 1) existing scripts; 2) at least one test
case available. The first criteria ensures that we do not impact the
performance of our framework by influencing the source code. The
second criteria allows for a verification of the program output such
that no faults are inserted after modification.

Ultimately, we chose Project Euler 1 as a source for our Python
scripts. This is in accordance with Fritz and Hage [13], who investi-
gated Project Euler scripts for type inference. Project Euler provides
a collection of challenging computational problems where each has
a verifiable output. Furthermore, Python scripts are available and
designed by members of the community.2 Listing 5 illustrates the
Python script we investigate. In particular, we chose the tasks of
generating the first𝑛 Fibonacci numbers.We consider four variables
for optimization (𝑛, 𝑎, 𝑏, 𝑖) which are distributed over two scopes.

1 def fib(n):

2 a = 0

3 b = 1

4 for i in range(n):

5 a, b = b, a+b

6 return a

Listing 5: Computing the 𝑛th Fibonacci number.

4.2 Computational Search
In this Section, we describe the search procedure and modification
operators applied to convert Python to Cython scripts.

Existing approaches for GI frequently use three types of muta-
tion: deleting of a line of code, insertion of a line of code, replace-
ment of a line of code [11, 26, 27]. For our investigation, we assume
that the available Python source code is bug-free, and we solely
aim to reduce execution time by including Cython constructs (i.e.,
static typing). Therefore, we only use one mutation operator, which
adds one out of eight static data types to an existing variable of the
script: char, short, int, long and float.

Due to the oversee-able search space (i.e., the investigated Python
script has four variables, see Listing 5), we decided to perform
an exhaustive search to generate all possible modifications of the
source Python script. Additionally, since the method is only called
once in each iteration, its return type is not inserted as it would
provide negligible differences.

While our exhaustive search is able to produce various Cython
scripts, we need to determine if improvements over the original
Python script have been achieved. In particular, the Cython scripts
are not able to achieve improvements if any of these rules apply:

• Compilation Error;
• Incorrect output;
• Slower execution time.

Given that the solution for the problem at hand is known (i.e., 𝑛th
Fibonacci), we can perform a test for the output of the script and
determine the correctness of the output.

4.3 Validation and Evaluation Method
Due to noisy measurements when determining the execution time
of Python programs [8], we repeat our experiments 30 times. We
then compare the average run time of the modified Cython pro-
grams with two baseline, the unmodified Python program and an
untyped Cython program. We use boxplots to illustrate runtime
improvements.

For our experiments, we consider two exemplary values for 𝑛:
25, 75. By doing so, we want to show that Py2Cy is able to generate
1https://projecteuler.net/
2https://github.com/TheAlgorithms/Python/tree/master/project_euler
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Fibonacci
Term

Successful Compilation
Errors

Incorrect
Value

25 117 268 240
75 28 268 329

Table 2: Computational Search Results.

different Cython scripts, tailored to the problem at hand. More-
over, investigating two cases gives insights on potential reasons for
incorrect outputs, such as integer overflows.

4.4 Results
To answer our research question, we use an exhaustive search to
create and evaluate 625 Cython scripts for both finding the 25th
and 75th Fibonacci numbers.

Table 2 shows statistics obtained from the search. In total, there
were 268 compilation failures due to incompatible datatype errors
(e.g., a string variable is used for numeric operations) or invalid type
conversions. Moreover, some Cython scripts produced a different
output than our original Python script. The reason for this can
be found in integer overflows, such as the solution is beyond the
scope of integers. This explains why the results for finding the
75th Fibonacci number contains 89 more incorrect values than the
search for the 25th Fibonacci number. The former requires the use
of the long data type to calculate the larger terms. For the remaining
Cython scripts, we measure the running time to check whether our
framework can be used to automatically improve Python scripts by
adding static typing with Cython.

Figure 2 illustrates a log boxplot of 30 repeated runtime measure-
ments for each optimal patch found by the scripts and compares
them to an untyped Cython and pure Python version. The exact av-
erage run-time obtained for typed Cython compared to Python are
2.08*10−7s and 9.56*10−7s, respectively for n=25, which means the
use of static typing sped Python up by a factor of 4.5. For n=75 the
runtimes are 2.09*10−7s compared to 3.81*10−6s, showing a more
dramatic increase in speed by around a factor of 18 with typed
Cython. This increase in the speed factor suggests that Cython’s
improvements are more prominent in programs that require heav-
ier computation. It is also worth noting that the untyped Cython
showed slight increases in speed on average compared to Python
but was still significantly slower than its typed variation. Therefore,
adding static types is necessary to achieve a substantial difference.

Listings 6 and 7 show the optimal patches found by the Py2Cy
and used to compute the runtimes.

1 def fib(short n):

2 cdef int a

3 cdef int b

4 cdef short i

5 a = 0

6 b = 1

7 for i in range(n):

8 (a,b) = (b,a+b)

9 return a

Listing 6: Best patch n=25.

1 def fib(short n):

2 cdef long a

3 cdef long b

4 cdef short i

5 a = 0

6 b = 1

7 for i in range(n):

8 (a,b) = (b,a+b)

9 return a

Listing 7: Best patch n = 75.

Figure 2: Run-times Boxplots for computing Fibonacci num-
bers.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we investigated the effectiveness of using Cython
with static typing to improve the runtime of Python programs.

For this purpose, we proposed Py2Cy, a GI tool for inserting static
types into the Python AST for obtaining an automatic conversion to
Cython. We applied Py2Cy to convert a Python script (i.e., the sum
of 𝑛 Fibonacci numbers) into a Cython script with static typing. Our
results showed that Py2Cy is successful in reducing the runtime by
a factor of 4.5 and 18 for calculating the 25th and 75th Fibonnaci
term, respectively, from a pure python script.

We aim to further develop Py2Cy to include more static-typing
features. Firstly, it would be useful to automatically declare loop
iteration index variables before the loops, as this is common Cython
practice. The number of types to test in the patches will also be
expanded to allow for editing programs with a larger variety of
possible types. Additionally, Cython pointers can be looked at to
achieve typing for arrays and adding cpdef declarations can also
be considered, to make methods callable from both Cython and
Python.

Although Py2Cy will only be able to achieve efficiency improve-
ments to Python, it can be used in conjunction with PyGGI [3]
to make functional improvements such as fixing bugs before its
translation to statically typed Cython.

While we were able to show the feasibility of applying Py2Cy
for runtime improvements, there are further tasks that can be per-
formed to strengthen our findings in future work. Further exper-
iments can be conducted on additional problems of higher com-
plexity (i.e., more variables to type), which will increase the search
space. With the consideration of complex optimization problems
and larger search spaces, the use of sophisticated search algorithms,
such as Hill Climbing [3] or Genetic Algorithms, becomes inter-
esting. Moreover, static inference tools [13, 22, 35, 40] could be
considered such that the search focuses on likely variable types
rather than choosing types at random.
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