
EuroGP-2024. Mario Giacobini, Bing Xue, Luca Manzoni Eds., Aberystwyth. 3-5 April
2024. Springer.

Genetic Improvement of Last Level Cache

William B. Langdon and David Clark

W.Langdon@cs.ucl.ac.uk david.clark@ucl.ac.uk
CREST, Department of Computer Science,

UCL, Gower Street, London, WC1E 6BT, UK

Abstract. With increasing reliance on multi-core parallel computing
performance is evermore dominated by interprocessor data communica-
tion typically provided by last level cache (LLC) shared between CPUs.
In an 8 core 3.6 GHz desktop using multiple local searches, the Magpie
parameter tuning genetic improvement (GI) system was able to reduce
L3 cache access (load + stores) four fold on an existing open source 7000
line C PARSEC parallel computing VIPS image benchmark.

Keywords hill climbing, SBSE, Software Engineering, automatic code
optimisation, srcml, XML, parameter tuning, reduced search space, Linux
perf

1 Introduction

The computing industry grew up in the presence of Moore’s Law [1] ensuring in
the early days software producers could always access more powerful computers
by the time their programs were ready for release. The days of clock speeds
doubling every two years are long gone, however silicon chip manufactures are
using the still increasing number of transistors to pack more processing cores
and larger cache memory onto their devices. This will continue into the foresee-
able future with more cores becoming available and so increasing importance of
communications between CPUs. Excluding specialised hardware, such as FPGAs
and GPUs, many current parallel applications communicate between CPUs via
shared memory. In multi-core silicon chips this can be highly effective. However
modern CPUs run far faster than main memory and a complex hierarchy of
cache memory is needed to try to keep data close to the individual computing
engines. In many parallel multi-threaded applications the last level cache (LLC)
is shared between cores and provides the main communication between threads
running on different CPUs within the same chip. In most cases control of the
cache hierarchy remains proprietary. Although cache memory will increase in
size, it will remain both the main bottleneck limiting performance for many ap-
plications and outside programmer control. We show genetic improvement can
in principle be used to automatically tune open source software to minimise use
of the shared LLC cache, obtaining a 4.0× reduction, without deep access to the
operating system or inner workings of the silicon chip.

PARSEC (Princeton Application Repository for Shared-Memory Computers)
is a benchmark suite of parallel computing programs, which focuses on emerging

1

https://www.evostar.org/2024/eurogp/
http://www.cs.ucl.ac.uk/staff/W.Langdon
http://www.cs.ucl.ac.uk/staff/D.Clark
http://crest.cs.ucl.ac.uk/

32 GigaBytes off chip computer RAM memory

Core 0 Core 1 Core 3Core 2

Level 2 cache Level 2 cache Level 2 cache Level 2 cache

Last Level Cache (LLC, 8 Mbytes)

InstructionData 1 InstructionData 1 InstructionData 1 InstructionData 1

Fig. 1. Schematic of three level on-chip cache hierarchy. The last level (here
level 3) cache is by far the largest on chip cache. (In our desktop each data
and instruction L1 cache is 32 Kbytes, L2 each 256 Kbytes and the LLC (L3)
is 8 Mbytes.) As well as interfacing with off chip memory, LLC also provides
communication between the compute cores (just 4 cores are shown).

workloads [2, page 73]. It includes VIPS [3], which is an image processing library
written in C. We selected the VIPS thumbnail image processing benchmark as
it is multi-threaded and can be easily scaled to cover the critical size of modern
chip caches. Indeed we use the Linux perf tool to measure its cache use during its
multi-threaded generation of a small “thumbnail” image from an image exceeding
the cache size (see Figure 2 https://github.com/wblangdon/vips). To avoid
potentially complicated trade-offs between cache, image size and image quality
(available in much more complicated image formats such as JPEG), for both
images we use non-compressed P6 raster scan full colour images (see Section 7.3)
and insist the mutated code produces identical output.

Fig. 2. 128×96 thumbnail image generated by VIPS.

In Section 3 we describe our use of the Magpie [4] genetic improvement sys-
tem to simultaneously tune application specific parameters, compiler and linker

2

https://github.com/wblangdon/vips

options, and the VIPS C source code. The VIPS benchmark is detailed in Sec-
tion 4. Whilst Section 5 describes how we use the Linux perf API to measure
last level cache LLC usage and measures to combat noise. Section 6 shows in
many cases Magpie is able to reduce cache usage by on average 75% (±4%). In
the discussion (Section 7) we note that, amongst other changes, most successful
mutations involved VIPS application parameters and (in Section 7.2) run and re-
port additional experiments just tuning them. Section 7.3 summarises the VIPS
thumbnail code and proposes an explanation for why Magpie’s patches work.
We conclude (Section 8) that despite noise, Magpie can find a single parameter
change which reduces LLC cache use four fold. But first we give the background.

2 Background

Until recently genetic improvement (GI) [5,6] has applied genetic program-
ming (GP) [7,8,9], to existing human written software, however in principle any
optimisation technique, such as search-based software engineering [10], Gram-
matical Evolution [11]–[14], Novelty Search [15], Fuzzy Systems [16], or AI [17]–[20],
can be used. Recently Magpie [4] has shown the power of local search in GI [21,22,23].
Already genetic improvement has been applied to automatic porting [5], trans-
planting code [24,25] code optimisation [26,27], including JavaScript [28] and
Clang LLVM IR intermediate code [29,30], hardware design [31], automatic soft-
ware testing [14] and cryptographic code [32]. Genetic improvement has been
demonstrated on GPU applications [33]––[36] including BarraCUDA [37], the
first GI code to be accepted into actual use [38]. At EuroGP’19 [39] we showed
GI could also speed up parallel CPU code. The resulting GIed RNAfold [40]
was accepted into production and like the GI version of BarraCUDA has been
downloaded many thousands of times (for example [41]).

Previously we [42] showed GP optimising L1 cache but L1 is much more
tightly bound to the CPU running the application (see Figure 1) and in half the
cases we were unable to find an improvement. Jimenez et al. [43] use a genetic
algorithm (GA) to improve the LLC cache but their approach is to improve
future generic cache designs rather than improving specific multi-core applica-
tions. Klinkenberg et al. [44] describe H2M which is a heuristic tool for managing
data placement in complex memory architectures in high performance computers
(HPC, i.e. super computers). However, they use fixed hand made heuristics and
are concerned only with runtime rather than seeking to show evolution can in
general optimise last level cache (LLC) use by application software. They agree
that managing diverse memory in parallel computing environments by hand is
hard and yet will become increasingly important. Cloud White [45] is a tool for
monitoring LLC contention between different customers’ virtual machines (VMs)
when they run on the same multi-core cloud computer server. Pons et al. [45]
claim low overhead, but Cloud White is a black-box tool for monitoring Qual-
ity of Service (QoS) rather than an optimisation tool. Whereas Clite [46] uses
Bayesian Optimization to try to get the best mix of existing VMs rather than
optimising individual applications.

3

3 Magpie

MAGPIE (Machine automated general performance improvement via evolution
of software) [4] is a freely available genetic improvement system written in
Python1 and designed to be applied to software written in any programming
language. The current release was downloaded from GitHub2. Magpie is well
documented. For example, its GitHub pages include examples and tutorials. Also
there is a more formal description [4]. Although we have used GI to optimise
both code and parameters before [47], Magpie is unique in being a general ge-
netic improvement framework that can optimise simultaneously parameters and
any programming language. Parameters to be optimised might be, for exam-
ple: constants3, program command line and execution parameters (Section 4.2)
and/or compiler options (Section 4.3). While much existing GI work has been
based on lines of source code (which Magpie also supports), we use its ability to
work with source code at the compiler’s AST level by using XML trees.

4 PARSEC VIPS Thumbnail Benchmark

The VIPS image processing library was downloaded as part of PARSEC 3.0 from
GitHub4. PARSEC as a whole is enormous, even the VIPS source library (sub
directory pkgs/apps/vips/· · ·/src/libvips) contains more than 90 000 lines of
code (mostly C source code).

4.1 Profiling VIPS thumbnail, targeting C code, generating XML

As mentioned in the introduction, we chose the VIPS thumbnail benchmark
from the VIPS library. vipsthumbnail.exe was compiled and linked following
the VIPS installation documentation and profiled using the Linux perf profil-
ing utility (perf version 3.10.0) operating at its maximum sampling frequency
(40 000 Hz). perf collected data from ten runs with a variety of number of con-
current threads (–vips-concurrency). In all cases run time was dominated by
the shrink gen function. Remember VIPS is essentially a library, most of which
is not used by an individual application. To extricate the important code used
by vipsthumbnail.exe, we took the union of functions in the hierarchical call of
shrink gen and any function sampled by perf. This gave us 37 .c source files con-
taining 10 829 lines of C code. Notice this is not the whole of the VIPS thumbnail
benchmark, it is still necessary to link to the libvips.so shared object library, but
the 37 files do contain important code which we wish Magpie to optimise. A fur-
ther filtering operation was done to select just the functions that are used during

1 We use Python 3.10.1
2 https://github.com/bloa/magpie (last update before submission 2 October 2023)
3 Our work evolving 50 000 parameters for RNAfold’s free energy minimisation algo-

rithm [48] and evolving 512 floating point values to convert the GNU C square root
function into other functions [49], was done before Magpie was available.

4 https://github.com/bamos/parsec-benchmark Version 3.0 for 64-bit x86

4

https://github.com/bloa/magpie
https://github.com/bamos/parsec-benchmark

fitness testing (Section 5), reducing the 37 files to a total of 7 328 lines of code.
These were converted to XML using scrml version 1.0.0 and made available to
Magpie to tune.

4.2 VIPS thumbnail parameters

The VIPS thumbnail benchmark allows up to 12 command line parameters, how-
ever some of these change the output. Excluding these, left five (vips-concurrency,
vips-tile-width, vips-tile-height, vips-thinstrip-height and vips-

fatstrip-height) all of which were made available via a parameter file to Mag-
pie to tune. Magpie starts its search from the default values.

4.3 GCC compiler and linker options

The GNU compiler/linker version 10.2.1 has several hundred command line
options. Rather than use them all, we selected those that appear in the in-
stallation scripts for VIPS plus some commonly used compilation options. For
each, we set the default to the value used in the VIPS installation process
but allowed Magpie the full range of allowed values. For example, VIPS uses
-O2, so by default Magpie uses -O2. Although -O3 is available to Magpie, it
was not used in the successful patches (Section 6). GCC options available to
Magpie to tune are: -fPIC -O -DNDEBUG -fvisibility -std=c99 -msse4.1

-fno-exceptions -ffat-lto-objects -flto -fno-strict-aliasing -fopenmp

-fstack-protector -fstack-protector-strong -ftree-vectorize -g -m64

-mtune=generic -nostdlib --param=ssp-buffer-size -pipe -std=c++11

-std=c++98

4.4 Magpie local search parameters

Due to the noisy nature of LLC cache usage, Magpie was run 100 times but each
run was allowed only 100 local search steps. Otherwise the Magpie defaults,
such as default time out for fitness evaluation (30 seconds) and limit on output
generated during fitness testing (10 000 bytes), were used.

Almost the full suite of Magpie’s XML mutation operators were enabled:
literal numbers, StmtReplacement, StmtInsertion, StmtDeletion, Comparison-
OperatorSetting, ArithmeticOperatorSetting, NumericSetting, RelativeNumer-
icSetting.

Magpie keeps track of the C source code it has mutated (via XML) and so
only the mutated C code needs to be recompiled. In contrast, if the compiler
command line is changed, all 37 C source files must be recompiled.

The mutated vipsthumbnail.exe was run with a command line generated by
Magpie from the five variable VIPS thumbnail command line parameters (see
Section 4.2).

5

5 Fitness Function

The experiments were run on a standard networked Centos 7 desktop. Even
when apparently idle, it has more than two hundred active Linux processes, all
of which use the LLC cache. LLC cache measurements are noisy (see, for ex-
ample, Figure 4. We used the Linux perf tool’s API to measure cache usage
during the critical multi-threaded image processing operations which create the
thumbnail5. This allows us to isolate it from mundane operations, like process-
ing the command line and reading and writing the image files. However initial
experiments to reduce noise by placing the LLC cache in a defined state before
starting perf measurements were unsuccessful. Instead the unmutated code was
used as a reference and fitness is based on running it and then running the mu-
tant as soon as possible, then setting fitness to the (signed) difference between
their cache usage. Unfortunately even this paired approach is still quite noisy.
(LLC measurements for the original unmutated code show that the coefficient
of variation is 14%.) Indeed Section 6 suggests Figure 4) shows running original
and mutant as a pair failed to eliminate fitness cache measurement noise.

To summarise there are multiple aspects of a mutation’s fitness: 1) If Magpie
mutated one or more XML files (Sections 4.1 and 4.4) or it changed the GCC
options (Section 4.3), do the C source files still compile and link without error,
2) Does the mutant program run ok with the possibly mutated command line
(Section 4.2), 3) Does it, within the two second timeout, produce an output
file6, 4) Is the output identical, 5) Finally, fitness is the number of LLC cache
accesses by the reference program minus that of the mutant (remember Magpie
minimises fitness). If any of the tests 1)–4) fail, Magpie discards the mutation.

6 Results

Magpie was run one hundred times on an otherwise idle 8 core 3.6 GHz Intel
i7-4790 networked desktop with an 8 Mbyte LLC (L3) cache. Each time Magpie
was allowed up to one hundred search steps (see Figure 3). The whole 100 runs
took less than five hours, cf. horizontal axis in Figure 5. Mean Magpie run time
2:47 minutes:seconds each.

Figure 3 plots the training fitness of patches during each run. 38 Magpie runs
terminated early and did not produce a best of run patch (black ◦). Figure 3
splits the remaining 62 Magpie runs into 21 + whose best of run patch failed to
generalise and 41 × where it did (see also Figures 4 and 5). Figure 3 shows by half
way through, runs whose best patch will generalise are doing better (remember
we are minimising) than the others, whose fitness tends to be scattered about the
mean performance of the original C code (cf. 100% on vertical axis in Figure 3).
(In an effort to deal with noise, Magpie by default, performs three warmup fitness

5 There is a vipsthumbnail command line option to allow the user to control the num-
ber of threads used during thumbnail image creation: –vips-concurrency, Section 4.2.

6 The Linux limit filesize command can be used to restrict the total size of files
generated but this was not necessary in these experiments.

6

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

L
3

 c
a
c
h

e
 l
o
a
d

s
 +

 s
to

re
s
 (

p
e
rc

e
n
t
o

ri
g
in

a
l)

VIPS thumbnail benchmark: Magpie search steps

 Mean
 original

mutant 38 runs
mutant 21 runs
mutant 41 runs

Fig. 3. 100 runs minimising last level cache accesses (load + stores) during
multiple threaded processing reducing 3264×2448 image (23 970 833 bytes) to
128×96 (Figure 2). 38 runs did not complete ◦, 21 produced poor patches +,
41 reduced LLC cache usage 4.0 fold ×. See also Figures 4 and 5.

evaluations before commencing its search, hence in Figure 3 the horizontal axis
starts at -2 rather than 1.)

To counter over fitting and measure out-of-sample performance, the 62 best
of run patches each were individually tested again 100 times. As with fitness
testing (Section 5), each test consists of executing the reference unmutated code
and the mutant as a pair, measuring their cache usage and checking the mutant
still produces identical output. Figure 4 shows the cache use of the original code
(x-axis) and of the mutant (y-axis). Notice noisy scatter of the data. Figure 4
(blue dots top) shows 21 mutants failed to give an improvement when run again.
Their individual performance is pretty close to that of the original code (cf. the
diagonal line in Figure 4). Indeed the noise is also similar, giving rise to the
approximately circular pattern at the top of Figure 4). Also note the circular
pattern indicates little correlation between the two measurements, suggesting
the pairing of the reference and mutated code is ineffective at noise suppres-
sion in this case. Which hints that any pattern (if any) in the noise takes place
faster than the < 30 milliseconds between running the reference and mutated
programs. In contrast 41 patches, despite the noise, always give better perfor-
mance. (Plotted as red dots in the lower part of Figure 4.) Although each of the
41 patches is in detail different, their performance are remarkably similar and
each gives a ≈ 4.0× reduction in LLC cache usage, Figure 5.

7

 500

 1000

 1500

 2000

 2500

 3000

 500 1000 1500 2000 2500 3000

L
3
 c

a
c
h
e

 a
c
c
e
s
s
e

s
 b

e
s
t
o

f
ru

n
 m

u
ta

n
t

L3 cache accesses original code

21 mutants

41 mutants

Mean original

Fig. 4. LLC cache use of 62 best of run mutants, each tested 100 times (vertical
axis). Horizontal axis LLC cache use of original code. Blue dots (near diagonal
line) show 21 mutants which fail to improve on original code. Red dots (lower)
show 41 mutants are always better than the unmutated code. Also Figure 5

 17

 19

 21

 23

 25

 27

 29

 31

 33

 0 1 2 3 4

L
3
 c

a
c
h
e

 l
o
a

d
s
 +

 s
to

re
s
 (

p
e
rc

e
n
t

o
ri
g
in

a
l)

Hours

Out of sample performance of the 41 best patches from 100 Magpie runs

 mean

 41 patches

Fig. 5. 100 Magpie runs. Mean + and estimated standard deviation (error bars)
of last level cache (LLC) use of the 41 good best of run patches found by Magpie
(average of one hundred samples, cf. Figure 4). The horizontal axis shows when
each patch was reported. The first successful mutant (left most) was found by
Magpie after 2:42 minutes:seconds.

8

7 Follow up Experiment: Optimising VIPS parameters

7.1 Types of improvement found in 41 successful Magpie runs

In the best of run mutants in the 41 runs which produced good patches there
were between 1 and 10 individual changes (mean 4.9, total 201). There are only
15 GCC command line changes, none of which seem related to optimisation. For
example, -O is not used. This may be because the available compiler and linker
options aim to reduce the time taken for computation rather than data access.
In contrast, all but two of the 41 patches tune one or more VIPS application
parameters. Similarly, all but one of these 41 mutations changes one or more
C source code files. In total there are: 8 C code insertions, 9 replacements and
23 statement deletions. Of the “smaller” code mutations, there are 20 arithmetic
operator and 24 comparison changes, 27 direct changes to numbers and 30 rela-
tive changes (e.g. increasing by 50%). And 60 GCC or VIPS parameter changes.
It is difficult to evaluate all the code changes but some appear not to matter as,
despite removing whole unused functions before running Magpie (Section 4.1)
they change code that is not executed or make a syntax change but the code
semantics are unchanged, e.g. replace 0 by (0/2). Table 1 further summarises
the 201 genes from the successful patches by mutation type and C source file.

7.2 Optimising vips-thinstrip-height and vips-fatstrip-height

From the top of Table 1 it is clear that VIPS parameter tuning stands out
amongst the changes in the 41 successful Magpie runs. Therefore a second set
of Magpie experiments were run to optimise LLC cache use by tuning only
the two VIPS application parameters which occurred in almost all of the 41
successful mutants found in Section 6. Magpie was set up identically except: the
GCC command line arguments and XML files and XML mutations were not
used. Only vips-thinstrip-height and vips-fatstrip-height where included in the
Magpie VIPS parameters. As before Magpie started from their default values
(1 and 16 respectively) and again for both Magpie chose integer mutation values
uniformly at random from the range 1 to 1200. Since it was no longer necessary
to compile and link each mutant, Magpie runs were much faster (18.5 seconds).

In these final Magpie runs, the search space is greatly reduced, from effec-
tively infinite to [1200]2 (1 440 000). With 100 runs, each with up to 100 samples,
in total Magpie was able to approximately sample the search space (see Figure 6).
The combined sampling suggests that vips-thinstrip-height correlates well with
LLC cache usage. Therefore Figure 7 concentrates upon it. Figure 6 shows val-
ues above vips-thinstrip-height = 6 simply scatter about the mean7 and so they
are omitted from Figure 7). Instead their mean is plotted with a horizontal line
in Figure 7. Allowing for the noise, Figure 7 suggests a monotonic reduction in
LLC usage as vips-thinstrip-height is increased from its default value 1 and that
vips-thinstrip-height ≥ 6 gives a 4.0 fold reduction in LLC use.
7 Although Table 2 suggests a slight downward trend in perf last level cache LLC

measurements with increasing vips-thinstrip-height, this is not visible in Figure 6,
which includes both vips-thinstrip-height and vips-fatstrip-height.

9

Table 1. Distribution of 201 genes in the 41 best of run Magpie patches. The
table is sorted by frequency, most important first, and is read left to right in row
order. Thus VIPS thumbnail command line parameters and GCC compilation
switches are mixed with source code arithmetic constants and XML changes.
The numbers give each gene’s frequency.

Type parameter name/file Type parameter name/file

VIPS vips-thinstrip-height 39 Arith XML im shrink.c.xml 10
Arith XML im guess prefix.c.xml 7 Arith XML threadpool.c.xml 6
Arith XML rw mask.c.xml 5 Arith XML memory.c.xml 5
Arith XML im vips2ppm.c.xml 5 Arith XML im prepare.c.xml 5
Arith XML im demand hint.c.xml 5 Arith XML format.c.xml 5
XML im demand hint.c.xml 4 XML check.c.xml 4
Arith XML time.c.xml 4 Arith XML im embed.c.xml 4
Arith XML check.c.xml 4 Arith XML buffer.c.xml 4
XML window.c.xml 3 XML meta.c.xml 3
XML im init world.c.xml 3 VIPS vips-tile-width 3
VIPS vips-fatstrip-height 3 GCC -fstack-protector 3
Arith XML object.c.xml 3 Arith XML init.c.xml 3
Arith XML im conv.c.xml 3 Arith XML im affine.c.xml 3
Arith XML debug.c.xml 3 XML time.c.xml 2
XML region.c.xml 2 XML interpolate.c.xml 2
XML init.c.xml 2 XML im guess prefix.c.xml 2
XML debug.c.xml 2 GCC -mtune=generic 2
GCC -ftree-vectorize 2 GCC -fopenmp 2
Arith XML window.c.xml 2 Arith XML util.c.xml 2
Arith XML region.c.xml 2 Arith XML rect.c.xml 2
Arith XML im open.c.xml 2 Arith XML im copy.c.xml 2
Arith XML im close.c.xml 2 XML util.c.xml 1
XML semaphore.c.xml 1 XML object.c.xml 1
XML memory.c.xml 1 XML im vips2ppm.c.xml 1
XML im prepare.c.xml 1 XML im copy.c.xml 1
XML im convsep f.c.xml 1 XML im convsep.c.xml 1
XML im affine.c.xml 1 XML buffer.c.xml 1
GCC -m64 1 GCC -g 1
GCC -fvisibility 1 GCC -fstack-protector-strong 1
GCC -fno-strict-aliasing 1 GCC -flto 1
Arith XML sinkdisc.c.xml 1 Arith XML semaphore.c.xml 1
Arith XML interpolate.c.xml 1

10

 0
 200

 400
 600

 800
 1000

 1200

 200
 400

 600
 800

 1000
 1200

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Mutant L3 cache loads + stores

VIPS thumbnail parameter vips-thinstrip-height

vips-fatstrip-height

Mutant L3 cache loads + stores

Fig. 6. 2nd Magpie experiment. LLC cache measurements during 100 runs to
simultaneously tune vips-thinstrip-height and vips-fatstrip-height. Data from the
same run have the same colour. The vertical line of dots above (1,16) are the
initial default starting point for all 100 runs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 3 4 5 6 1200

L
3
 c

a
c
h
e

 l
o
a

d
s
 +

 s
to

re
s

VIPS thumbnail parameter vips-thinstrip-height

default --vips-thinstrip-height=1 vips-fatstrip-height=16

mean vips-thinstrip-height 7--1200

Fig. 7. 2nd Magpie experiment. LLC cache measurements during 100 runs to
simultaneously tune vips-thinstrip-height and vips-fatstrip-height (the same data
as Figure 6). Values above vips-thinstrip-height=6 not plotted as data are simply
scattered about the mean (dotted line). Horizontal noise added to spread data
for vips-thinstrip-height=1.

11

7.3 vips-thinstrip-height

This section tries to explain Magpie’s results in terms of the VIPS application.
Two dimensional images, such as photographs, are usually laid out on disk and
in memory as rows of consecutive pixels. Starting at the left of the top edge and
moving along it to the right edge and then moving down to the left hand edge
of the second row. This pattern is repeated, working left to right across each
row and progressively down the image until we reach the right hand end of its
bottom row.

Although it is now common place for computers to have enough main RAM
memory to store uncompressed the whole image, often images are too big to fit
into the cache. For example, excluding metadata, a full colour P6 (3 bytes per
pixel) 3264×2448 image occupies 3 × 3264 × 2448 = 23 970 816 bytes, whereas
these experiments were run on a computer with a LLC cache of 8 388 608 bytes.
At more than 7000 lines of deeply nested [50] multi-threaded code, it is difficulty
to be exactly sure which actions impact the LLC cache and in which ways.
However, to exploit multi-threading, the VIPS library (ignoring small overlaps
and edge effects) divides the input image into equal sized rectangular tiles. These
are processed by separate threads and so random timing effects mean that they
are processed in a different order in different runs, but they approximately follow
the left to right top to bottom ordering normally used for image processing. The
tiles are 128 pixels (384 bytes) wide. Depending upon alignment, they occupy
6 or 7, 64 byte cache lines. With the default value of vips-thinstrip-height (1),
they are 1 pixel high, so for our 3264×2448 example each row takes d3264/128e =
26 (25.5) tiles, and there are a total of 63 648 tiles.

On average, see Figure 4 and Table 2, processing the image takes 2161 LLC
cache accesses. 1909 are LLC cache loads, the rest are LLC cache stores. Meaning
on average each LLC cache load access fetches 12 600 bytes of the image. What
appears to be happening is the LLC cache is asked for 26 tiles of data. These
occupy 9 9792 bytes (depending upon alignment, this is 153 or 155 cache lines).
Even though these data requests arrive at different times from different threads,
the cache hierarchy appears to be able to consolidate these into a single LLC
access. (9 9792 is within 28% of the average LLC cache load size. See column 9
in top row of Table 2.) When these data arrive, the 8 threads are able to process
the 26 tiles and then request data for the next row (again 153 or 155 cache lines).
It is not clear why the cache hierarchy is able to consolidate requests for 25.5
tiles but not for multiple rows.

When vips-thinstrip-height is increased to 2, the VIPS tiles are increased
from 128×1 to 128×2 pixels (again ignoring overlaps). Again depending upon
alignment, each tile now occupies 12 or 14 cache lines. and the number of LLC
cache read accesses falls on average to 924, i.e. 25 900 bytes each. This roughly
doubling of the mean size of data per LLC cache load is consistent with the idea
that the cache hierarchy is able to consolidate 26 scattered request for cache
reads but something about reading the end of two rows of consecutive bytes
prevents further consolidation.

12

Table 2 shows as vips-thinstrip-height is increased to 3, 4, 5 and 6, the aver-
age number of bytes fetched per LLC load access increases and remains approx-
imately the same as the size of one row of tiles. I.e., the last but one column in
Table 2 remain near 1.0.

Although vips-thinstrip-height can be increased above 6, from Table 2 it is
clear that this has only a small effect. It may be the VIPS code itself places
a limit on the tile height. Alternatively the computer’s RAM and/or the cache
hierarchy may limit pre-fetch sizes to 64 Kbytes (65 536 bytes), cf. column 6 in
Table 2. Above vips-thinstrip-height=96 (a magic number for VIPS’ tile height)
there appear to be no further reductions.

It is clear that the interaction between vips-thinstrip-height and the LLC is
noisy and complicated but its interaction with internal VIPS tile height seems
like a reasonable first step at explaining how it works and why vips-thinstrip-
height stands out in Magpie’s “hands clean” optimisation.

Table 2. Mean impact on last level cache LLC of running the original code
using 8 threads with various values of –vips-thinstrip-height (column 1) 100
times. Numbers in brackets are estimates of standard deviation, except last col-

umn where () indicates standard error in the calculation of mean LLC load size
rows size

(column 9 = column 6 divided by column 8.)

thinstrip LCC loads stores load bytes rows bytes Ratio

1 1909 (290) 252 (22) 12600 (1910) 9792 1.28 (0.020)
2 924 (191) 188 (19) 25900 (5340) 19584 1.32 (0.027)
3 764 (113) 173 (13) 31400 (4650) 29376 1.07 (0.016)
4 609 (108) 166 (13) 39300 (7010) 39168 1.00 (0.018)
5 578 (89) 165 (13) 41500 (6360) 48960 0.85 (0.013)
6 477 (92) 155 (12) 50200 (9690) 58752 0.85 (0.017)
7 450 (84) 152 (12) 53200 (9870) 68544 0.78 (0.014)
8 447 (82) 152 (12) 53700 (9830) 78336 0.69 (0.013)
9 455 (74) 151 (12) 52700 (8540) 88128 0.60 (0.010)

10 432 (80) 147 (12) 55500 (10230) 97920 0.57 (0.010)
20 424 (93) 149 (14) 56600 (12450) 195840 0.29 (0.006)
40 410 (81) 145 (11) 58500 (11580) 391680 0.15 (0.003)
60 371 (69) 145 (12) 64500 (11950) 587520 0.11 (0.002)
80 383 (75) 148 (12) 62600 (12250) 783360 0.08 (0.002)
96 341 (62) 145 (11) 70200 (12840) 940032 0.07 (0.001)

100 353 (72) 146 (11) 67800 (13830) 979200 0.07 (0.001)
500 350 (84) 146 (12) 68500 (16370) 4896000 0.01 (0.000)

1000 345 (61) 146 (11) 69400 (12340) 9792000 0.01 (0.000)
1500 345 (57) 145 (12) 69400 (11450) 14688000 0.00 (0.000)
2000 364 (75) 144 (10) 65900 (13580) 19584000 0.00 (0.000)
2448 342 (57) 146 (10) 70000 (11560) 23970816 0.00 (0.000)
2500 347 (64) 146 (11) 69000 (12640) 23970816 0.00 (0.000)

13

8 Conclusions

We have shown an “off the shelf” genetic improvement (GI) system Magpie [4]
using multiple hill climbing runs can automatically tune a standard parallel
processing benchmark to reduce four fold its use of last level cache (LLC) on
modern multi-core computers.

The VIPS image processing thumbnail benchmark is representative of a large
class of parallel processing programs. Its multi-processing is based on POSIX
pthreads, which is heavily used in multi-core applications. Although we expect
continued growth of hybrid computers which off load significant computation
to accelerators (e.g. GPU [51], TPUs [52], FPGAs [53]), we expect they will
remain hard to program effectively and so they may remain the preserve of
artificial intelligence (AI) deep artificial neural networks [54], e.g. for training
large language models (LLMs) and specific domains such as astronomy [55] and
bioinformatics [56]. Instead we anticipate mundane applications will continue to
be run on multi-core computers. To get the best of their increasing numbers of
cores will require, not just optimising the code, but also increasingly optimising
data communication. However it appears (cf. Section 7.1) existing compilers
optimise computation not data access (“Compilers are not good at managing
caches” [57, p44]). Therefore new tools will be needed [58] to make effective use of
complex proprietary hardware cache hierarchies, whose operation is invisible to
the user level programmer. By taking a “hands off” approach Magpie may be able
to help programmers by optimising for them the last level cache which provides
high bandwidth inter-core communication, which will be increasingly needed in
what promises to be the dominant domain for future software development.

Acknowledgements

I am grateful for the help of Aymeric Blot and Dan Blackwell.

References

1. Moore, G.E.: Cramming more components onto integrated circuits. Electronics
38(8), 114–117 (April 19 1965)

2. Bienia, C., Sanjeev Kumar, Jaswinder Pal Singh, Kai Li: The PARSEC benchmark
suite: characterization and architectural implications. In: Moshovos, A., Tarditi, D.,
Olukotun, K. (eds.) 17th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2008. pp. 72–81. ACM, Toronto, Ontario, Canada
(October 25-29 2008), http://dx.doi.org/10.1145/1454115.1454128

3. Martinez, K., Cupitt, J.: VIPS - a highly tuned image processing software ar-
chitecture. In: Proceedings of the 2005 International Conference on Image Pro-
cessing, ICIP. pp. 574–577. IEEE, Genoa, Italy (September 11-14 2005), http:

//dx.doi.org/10.1109/ICIP.2005.1530120

4. Blot, A., Petke, J.: MAGPIE: Machine automated general performance improve-
ment via evolution of software. arXiv (4 Aug 2022), http://dx.doi.org/10.

48550/arxiv.2208.02811

14

http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1109/ICIP.2005.1530120
http://dx.doi.org/10.1109/ICIP.2005.1530120
http://dx.doi.org/10.48550/arxiv.2208.02811
http://dx.doi.org/10.48550/arxiv.2208.02811

5. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In: Sobrevilla, P. (ed.) 2010 IEEE World Congress on Computational Intelligence.
pp. 2376–2383. IEEE, Barcelona (18-23 Jul 2010), http://dx.doi.org/10.1109/
CEC.2010.5585922

6. Petke, J., et al.: Genetic improvement of software: a comprehensive survey. IEEE
Transactions on Evolutionary Computation 22(3), 415–432 (Jun 2018), http://
dx.doi.org/doi:10.1109/TEVC.2017.2693219

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992), http://mitpress.
mit.edu/books/genetic-programming

8. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Program-
ming – An Introduction. Morgan Kaufmann (1998), https://www.amazon.

co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/

155860510X

9. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic pro-
gramming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008), http://www.gp-field-guide.

org.uk, (With contributions by J. R. Koza)

10. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology 43(14), 833–839 (Dec 2001), http://dx.doi.org/10.1016/
S0950-5849(01)00189-6

11. Jhe-Yu Liou, Forrest, S., Carole-Jean Wu: Genetic improvement of GPU code.
In: Petke, J., Shin Hwei Tan, Langdon, W.B., Weimer, W. (eds.) GI-2019, ICSE
workshops proceedings. pp. 20–27. IEEE, Montreal (28 May 2019), http://dx.

doi.org/10.1109/GI.2019.00014, Best Paper

12. Jhe-Yu Liou, Xiaodong Wang, Forrest, S., Carole-Jean Wu: GEVO: GPU code opti-
mization using evolutionary computation. ACM Transactions on Architecture and
Code Optimization 17(4), Article 33 (Dec 2020), http://dx.doi.org/10.1145/

3418055

13. Schweim, D., et al.: Using knowledge of human-generated code to bias the search
in program synthesis with grammatical evolution. In: Chicano, F., et al. (eds.)
Proceedings of the 2021 Genetic and Evolutionary Computation Conference Com-
panion. pp. 331–332. GECCO ’21, Association for Computing Machinery, internet
(Jul 10-14 2021), http://dx.doi.org/10.1145/3449726.3459548

14. Murphy, A., Laurent, T., Ventresque, A.: The case for grammatical evolution in
test generation. In: Bruce, B.R., et al. (eds.) GI @ GECCO 2022. pp. 1946–1947.
Association for Computing Machinery, Boston, USA (9 Jul 2022), http://dx.doi.
org/10.1145/3520304.3534042

15. Griffin, D., Stepney, S., Vidamour, I.: DebugNS: Novelty search for finding bugs in
simulators. In: Nowack, V., et al. (eds.) 12th International Workshop on Genetic
Improvement @ICSE 2023. pp. 17–18. IEEE, Melbourne, Australia (20 May 2023),
http://dx.doi.org/10.1109/GI59320.2023.00012

16. Yueke Zhang, Yu Huang: Leveraging fuzzy system to reduce uncertainty of decision
making in software engineering automation. In: Bruce, B.R., et al. (eds.) GI @
GECCO 2022. pp. 1948–1949. Association for Computing Machinery, Boston, USA
(9 Jul 2022), http://dx.doi.org/10.1145/3520304.3533991

17. Weimer, W.: From deep learning to human judgments: Lessons for genetic improve-
ment. GI @ GECCO 2022 (9 Jul 2022), http://geneticimprovementofsoftware.
com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf, Invited keynote

15

http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/10.1109/CEC.2010.5585922
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://dx.doi.org/doi:10.1109/TEVC.2017.2693219
http://mitpress.mit.edu/books/genetic-programming
http://mitpress.mit.edu/books/genetic-programming
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
https://www.amazon.co.uk/Genetic-Programming-Introduction-Artificial-Intelligence/dp/155860510X
http://www.gp-field-guide.org.uk
http://www.gp-field-guide.org.uk
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1109/GI.2019.00014
http://dx.doi.org/10.1109/GI.2019.00014
http://dx.doi.org/10.1145/3418055
http://dx.doi.org/10.1145/3418055
http://dx.doi.org/10.1145/3449726.3459548
http://dx.doi.org/10.1145/3520304.3534042
http://dx.doi.org/10.1145/3520304.3534042
http://dx.doi.org/10.1109/GI59320.2023.00012
http://dx.doi.org/10.1145/3520304.3533991
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf
http://geneticimprovementofsoftware.com/slides/gi2022gecco/weimer-keynote-gi-gecco-22.pdf

18. Sungmin Kang, Shin Yoo: Towards objective-tailored genetic improvement through
large language models. In: Nowack, V., et al. (eds.) 12th International Workshop
on Genetic Improvement @ICSE 2023. pp. 19–20. IEEE, Melbourne, Australia
(20 May 2023), http://dx.doi.org/10.1109/GI59320.2023.00013, Best position
paper

19. Krauss, O.: Exploring the use of natural language processing techniques for enhanc-
ing genetic improvement. In: Nowack, V., et al. (eds.) 12th International Workshop
on Genetic Improvement @ICSE 2023. pp. 21–22. IEEE, Melbourne, Australia (20
May 2023), http://dx.doi.org/10.1109/GI59320.2023.00014

20. Brownlee, A.E.I., et al.: Enhancing genetic improvement mutations using large
language models. In: Arcaini, P., Tao Yue, Fredericks, E. (eds.) SSBSE 2023: Chal-
lenge Track. LNCS, vol. 14415, pp. 153–159. Springer, San Francisco, USA (8 Dec
2023), http://dx.doi.org/10.1007/978-3-031-48796-5_13

21. Blot, A., Petke, J.: Empirical comparison of search heuristics for genetic improve-
ment of software. IEEE Transactions on Evolutionary Computation 25(5), 1001–
1011 (Oct 2021), http://dx.doi.org/10.1109/TEVC.2021.3070271

22. Blot, A., Petke, J.: Using genetic improvement to optimise optimisation algorithm
implementations. In: Hadj-Hamou, K. (ed.) 23ème congrès annuel de la Société
Française de Recherche Opérationnelle et d’Aide à la Décision, ROADEF’2022.
INSA Lyon, France (23–25 Feb 2022), https://hal.archives-ouvertes.fr/

hal-03595447
23. Langdon, W.B., Alexander, B.J.: Genetic improvement of OLC and H3 with Mag-

pie. In: Nowack, V., et al. (eds.) 12th International Workshop on Genetic Im-
provement @ICSE 2023. pp. 9–16. IEEE, Melbourne, Australia (20 May 2023),
http://dx.doi.org/10.1109/GI59320.2023.00011

24. Marginean, A., Barr, E.T., Harman, M., Yue Jia: Automated transplantation of
call graph and layout features into Kate. In: Labiche, Y., Barros, M. (eds.) SSBSE.
LNCS, vol. 9275, pp. 262–268. Springer, Bergamo, Italy (Sep 5-7 2015), http:

//dx.doi.org/10.1007/978-3-319-22183-0_21
25. Marginean, A.: Automated Software Transplantation. Ph.D. thesis, University

College London, UK (8 Nov 2021), https://discovery.ucl.ac.uk/id/eprint/

10137954/1/Marginean_10137954_thesis_redacted.pdf, ACM SIGEVO Award
for the best dissertation of the year

26. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1), 118–135 (Feb 2015),
http://dx.doi.org/10.1109/TEVC.2013.2281544

27. Blot, A., Petke, J.: Comparing genetic programming approaches for non-functional
genetic improvement case study: Improvement of MiniSAT’s running time. In:
Ting Hu, Lourenco, N., Medvet, E. (eds.) EuroGP 2020: Proceedings of the 23rd
European Conference on Genetic Programming. LNCS, vol. 12101, pp. 68–83.
Springer Verlag, Seville, Spain (15-17 Apr 2020), http://dx.doi.org/10.1007/

978-3-030-44094-7_5
28. de Almeida Farzat, F., de Oliveira Barros, M., Horta Travassos, G.: Challenges on

applying genetic improvement in JavaScript using a high-performance computer.
Journal of Software Engineering Research and Development 6(12) (Dec 2018),
http://dx.doi.org/10.1186/s40411-018-0056-2, 20th Iberoamerican Confer-
ence on Software Engineering

29. Shuyue Stella Li, et al.: Genetic improvement in the Shackleton framework for
optimizing LLVM pass sequences. In: Bruce, B.R., et al. (eds.) GI @ GECCO
2022. pp. 1938–1939. Association for Computing Machinery, Boston, USA (9 Jul
2022), http://dx.doi.org/10.1145/3520304.3534000, winner Best Presentation

16

http://dx.doi.org/10.1109/GI59320.2023.00013
http://dx.doi.org/10.1109/GI59320.2023.00014
http://dx.doi.org/10.1007/978-3-031-48796-5_13
http://dx.doi.org/10.1109/TEVC.2021.3070271
https://hal.archives-ouvertes.fr/hal-03595447
https://hal.archives-ouvertes.fr/hal-03595447
http://dx.doi.org/10.1109/GI59320.2023.00011
http://dx.doi.org/10.1007/978-3-319-22183-0_21
http://dx.doi.org/10.1007/978-3-319-22183-0_21
https://discovery.ucl.ac.uk/id/eprint/10137954/1/Marginean_10137954_thesis_redacted.pdf
https://discovery.ucl.ac.uk/id/eprint/10137954/1/Marginean_10137954_thesis_redacted.pdf
http://dx.doi.org/10.1109/TEVC.2013.2281544
http://dx.doi.org/10.1007/978-3-030-44094-7_5
http://dx.doi.org/10.1007/978-3-030-44094-7_5
http://dx.doi.org/10.1186/s40411-018-0056-2
http://dx.doi.org/10.1145/3520304.3534000

30. Langdon, W.B., Al-Subaihin, A., Blot, A., Clark, D.: Genetic improvement of
LLVM intermediate representation. In: Pappa, G., Giacobini, M., Vasicek, Z. (eds.)
EuroGP 2023: Proceedings of the 26th European Conference on Genetic Program-
ming. LNCS, vol. 13986, pp. 244–259. Springer Verlag, Brno, Czech Republic (12-14
Apr 2023), http://dx.doi.org/10.1007/978-3-031-29573-7_16

31. Bruce, B.R.: Automatically exploring computer system design spaces. In: Bruce,
B.R., et al. (eds.) GI @ GECCO 2022. pp. 1926–1927. Association for Comput-
ing Machinery, Boston, USA (9 Jul 2022), http://dx.doi.org/10.1145/3520304.
3534021

32. Kuepper, J., et al.: CryptOpt: Verified compilation with randomized program
search for cryptographic primitives. In: Foster, N. (ed.) 44th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2023. p. ar-
ticle no. 158. Association for Computing Machinery, Orlando, Florida (17-21 Jun
2023), http://dx.doi.org/10.1145/3591272, Gold winner 2023 HUMIES, PLDI
Distinguished Paper

33. Langdon, W.B., Harman, M.: Genetically improved CUDA C++ software. In:
Nicolau, M., et al. (eds.) 17th European Conference on Genetic Programming.
LNCS, vol. 8599, pp. 87–99. Springer, Granada, Spain (23-25 Apr 2014), http:
//dx.doi.org/10.1007/978-3-662-44303-3_8

34. Langdon, W.B., Modat, M., Petke, J., Harman, M.: Improving 3D medical image
registration CUDA software with genetic programming. In: Igel, C., et al. (eds.)
GECCO ’14: Proceeding of the sixteenth annual conference on genetic and evo-
lutionary computation conference. pp. 951–958. ACM, Vancouver, BC, Canada
(12-15 Jul 2014), http://dx.doi.org/10.1145/2576768.2598244

35. Langdon, W.B., Harman, M.: Grow and graft a better CUDA pknotsRG for RNA
pseudoknot free energy calculation. In: Langdon, W.B., Petke, J., White, D.R.
(eds.) Genetic Improvement 2015 Workshop. pp. 805–810. ACM, Madrid (11-15
Jul 2015), http://dx.doi.org/10.1145/2739482.2768418

36. Langdon, W.B., et al.: Genetic improvement of GPU software. Genetic Program-
ming and Evolvable Machines 18(1), 5–44 (Mar 2017), http://dx.doi.org/10.

1007/s10710-016-9273-9

37. Klus, P., et al.: BarraCUDA - a fast short read sequence aligner using graph-
ics processing units. BMC Research Notes 5(27) (2012), http://dx.doi.org/10.
1186/1756-0500-5-27

38. Langdon, W.B., Brian Yee Hong Lam: Genetically improved BarraCUDA. BioData
Mining 20(28) (2 Aug 2017), http://dx.doi.org/10.1186/s13040-017-0149-1

39. Langdon, W.B., Lorenz, R.: Evolving AVX512 parallel C code using GP. In:
Sekanina, L., Ting Hu, Lourenco, N. (eds.) EuroGP 2019: Proceedings of the
22nd European Conference on Genetic Programming. LNCS, vol. 11451, pp. 245–
261. Springer Verlag, Leipzig, Germany (24-26 Apr 2019), http://dx.doi.org/

10.1007/978-3-030-16670-0_16

40. Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C.,
Stadler, P.F., Hofacker, I.L.: ViennaRNA package 2.0. Algorithms for Molecular
Biology 6(1) (2011), http://dx.doi.org/10.1186/1748-7188-6-26

41. Andrews, R.J., et al.: A map of the SARS-CoV-2 RNA structurome. NAR Ge-
nomics and Bioinformatics 3(2), lqab043 (June 2021), http://dx.doi.org/10.

1093/nargab/lqab043

42. Langdon, W.B., Petke, J., Blot, A., Clark, D.: Genetically improved software with
fewer data caches misses. In: Silva, S., et al. (eds.) Proceedings of the Companion
Conference on Genetic and Evolutionary Computation. pp. 799–802. GECCO ’23,

17

http://dx.doi.org/10.1007/978-3-031-29573-7_16
http://dx.doi.org/10.1145/3520304.3534021
http://dx.doi.org/10.1145/3520304.3534021
http://dx.doi.org/10.1145/3591272
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1007/978-3-662-44303-3_8
http://dx.doi.org/10.1145/2576768.2598244
http://dx.doi.org/10.1145/2739482.2768418
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1007/s10710-016-9273-9
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/1756-0500-5-27
http://dx.doi.org/10.1186/s13040-017-0149-1
http://dx.doi.org/10.1007/978-3-030-16670-0_16
http://dx.doi.org/10.1007/978-3-030-16670-0_16
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1093/nargab/lqab043
http://dx.doi.org/10.1093/nargab/lqab043

Association for Computing Machinery, Lisbon, Portugal (15-19 Jul 2023), http:
//dx.doi.org/10.1145/3583133.3590542

43. Jimenez, D.A., Teran, E., Gratz, P.V.: Last-level cache insertion and promotion
policy in the presence of aggressive prefetching. IEEE Computer Architecture
Letters 22(1), 17–20 (Jan-June 2023), http://dx.doi.org/10.1109/LCA.2023.

3242178

44. Klinkenberg, J., et al.: H2M: exploiting heterogeneous shared memory architec-
tures. Future Generation Computer Systems 148, 39–55 (2023), http://dx.doi.
org/10.1016/J.FUTURE.2023.05.019

45. Lucia Pons, et al.: Cloud White: Detecting and estimating QoS degradation of
latency-critical workloads in the public cloud. Future Generation Computer Sys-
tems 138, 13–25 (Januray 2023), http://dx.doi.org/10.1016/J.FUTURE.2022.

08.012

46. Tirthak Patel, Tiwari, D.: CLITE: Efficient and QoS-aware co-location of multiple
latency-critical jobs for warehouse scale computers. In: 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). pp. 193–206
(2020), http://dx.doi.org/10.1109/HPCA47549.2020.00025

47. Langdon, W.B., Brian Yee Hong Lam, Petke, J., Harman, M.: Improving CUDA
DNA analysis software with genetic programming. In: Silva, S., et al. (eds.)
GECCO ’15: Proceedings of the 2015 Annual Conference on Genetic and Evo-
lutionary Computation. pp. 1063–1070. ACM, Madrid (11-15 Jul 2015), http:

//dx.doi.org/10.1145/2739480.2754652

48. Langdon, W.B., Petke, J., Lorenz, R.: Evolving better RNAfold structure predic-
tion. In: Castelli, M., Sekanina, L., Mengjie Zhang (eds.) EuroGP 2018: Proceed-
ings of the 21st European Conference on Genetic Programming. LNCS, vol. 10781,
pp. 220–236. Springer Verlag, Parma, Italy (4-6 Apr 2018), http://dx.doi.org/
10.1007/978-3-319-77553-1_14

49. Langdon, W.B., Krauss, O.: Genetic improvement of data for maths functions.
ACM Transactions on Evolutionary Learning and Optimization 1(2), Article No.:
7 (Jul 2021), http://dx.doi.org/10.1145/3461016

50. Langdon, W.B., Clark, D.: Deep mutations have little impact. In: Gabin An, et al.
(eds.) 13th International Workshop on Genetic Improvement @ICSE 2024. ACM,
Lisbon (16 Apr 2024), forthcoming

51. Owens, J.D., et al.: GPU computing. Proceedings of the IEEE 96(5), 879–899 (May
2008), http://dx.doi.org/doi:10.1109/JPROC.2008.917757, Invited paper

52. Jouppi, N.P., et al.: TPU v4: an optically reconfigurable supercomputer for machine
learning with hardware support for embeddings. In: Proceedings of the 50th Annual
International Symposium on Computer Architecture, ISCA. p. article no 82. ACM,
Orlando, FL, USA (2023), http://dx.doi.org/10.1145/3579371.3589350

53. Santiago, A., et al.: Analysis and deployment of applications acceleration environ-
ment for Xilinx hardware-accelerated platforms. In: 37th Conference on Design of
Circuits and Integrated Circuits (DCIS). IEEE, Pamplona, Spain (16-18 November
2022), http://dx.doi.org/10.1109/DCIS55711.2022.9970101

54. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature
550(7676), 354–359 (2017), http://dx.doi.org/10.1038/nature24270

55. Adamek, K., Dimoudi, S., Giles, M., Armour, W.: GPU fast convolution via the
overlap-and-save method in shared memory. ACM Transactions on Architecture
and Code Optimization 17(3), article no 18 (aug 2020), http://dx.doi.org/10.
1145/3394116

18

http://dx.doi.org/10.1145/3583133.3590542
http://dx.doi.org/10.1145/3583133.3590542
http://dx.doi.org/10.1109/LCA.2023.3242178
http://dx.doi.org/10.1109/LCA.2023.3242178
http://dx.doi.org/10.1016/J.FUTURE.2023.05.019
http://dx.doi.org/10.1016/J.FUTURE.2023.05.019
http://dx.doi.org/10.1016/J.FUTURE.2022.08.012
http://dx.doi.org/10.1016/J.FUTURE.2022.08.012
http://dx.doi.org/10.1109/HPCA47549.2020.00025
http://dx.doi.org/10.1145/2739480.2754652
http://dx.doi.org/10.1145/2739480.2754652
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://dx.doi.org/10.1007/978-3-319-77553-1_14
http://dx.doi.org/10.1145/3461016
http://dx.doi.org/doi:10.1109/JPROC.2008.917757
http://dx.doi.org/10.1145/3579371.3589350
http://dx.doi.org/10.1109/DCIS55711.2022.9970101
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1145/3394116
http://dx.doi.org/10.1145/3394116

56. Robinson, T., Harkin, J., Shukla, P.: Hardware acceleration of genomics data
analysis: challenges and opportunities. Bioinformatics 37(13), 1785–1795 (2021),
http://dx.doi.org/10.1093/bioinformatics/btab017

57. Berger, M.: Compilers and computer architecture: Caches and caching.
G5035, BSc/MComp Computer Science, University of Sussex (December 2019),
https://users.sussex.ac.uk/~mfb21/compilers/slides/15-handout.pdf, Ac-
cessed November 2023

58. Yung-Chia Lin, Jenq-Kuen Lee, Bodin, F.: Guest editorial: Special issue on embed-
ded multicore applications and optimization. Journal of Signal Processing Systems
91(3-4), 217–218 (2019), http://dx.doi.org/10.1007/S11265-018-1431-2

19

http://dx.doi.org/10.1093/bioinformatics/btab017
https://users.sussex.ac.uk/~mfb21/compilers/slides/15-handout.pdf
http://dx.doi.org/10.1007/S11265-018-1431-2

	Genetic Improvement of Last Level Cache

