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ABSTRACT
Using MAGPIE (Machine Automated General Performance Im-
provement via Evolution of software), we measure the impact of
genetic improvement (GI) on a non-deterministic deeply nested
PARSEC VIPS parallel computing multi-threaded image process-
ing benchmark written in C. More than 53% of mutants compile
and generate identical results to the original program. We find
about 10% Failed Disruption Propagation (FDP). Excluding inter-
nal errors and asserts, almost all changes deeper than 30 nested
functions which are Executed and Infect data or change control
are not Propagated to the output, i.e. these deep PIE changes have
no external effect. Suggesting (where it relies on testing) automatic
software engineering on deeply nested code will be hard.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering.
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1 INTRODUCTION
The robustness of software is a double edged sword. From the point
of view of the user, having computer systems which do not fail is
important, however from the perspective of software developers
locating bugs in robust software and testing their fixes is hard.
This slows down progress, forcing the user to deal with imperfect
software which may have many defects or irritations which the
development team in practice will never have time to resolve. Here
we are primarily interested in automated software engineering,
such as genetic improvement, but more robust, potentially more
deeply nested programs, may be harder to repair, maintain and
optimise either mechanically or manually.
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2 SOFTWARE ROBUSTNESS AND
GENETIC IMPROVEMENT

By robust we mean that a system continues to operate even when
perturbed. A robust system is still usable despite errors. If the per-
turbation is “small”, a robust system will only deviate “slightly” or
not at all from it usual behaviour and so remain usable. With larger
perturbations a robust system may start to give larger responses.
Only with very large perturbations will a robust system fail.

Globally we are now at the point where society relies on soft-
ware, is even addicted to software [34], and although software is far
from perfect1, nonetheless it is used and delivers huge economic
benefits [30][14]. Even though much effort is devoted to software
verification and validation, particularly testing [17], including mu-
tation testing [12, 21], in industry [20], society depends on buggy
software, however real software is robust.

Previously [11, 40, 49] we found that software robustness can
be explained by information theory [9, 44, 45] and an idea from
software testing [58]. Voas and Miller [58] consider the difficulty
of testing software, which can be considered as the other side of
software robustness. They say for a software error to be seen the
buggy codemust be executed (their “E”), the executionmust in some
way change the internals of the program (they call this infection “I”)
and that the change must propagate (“P”) to the program’s output(s).
Overall this is known as their “PIE” framework. “E”, “I” and “P”
must all be present for a code defect to impact the software. So, for
example, if the bug lies in code which the genetic improvement (GI)
fitness tests does not exercise (no “E”) then the bug will have no
fitness impact. If there is no measurable fitness impact, GI will find
it very difficult to repair the bug.

We consider “P”: does the disruption, if any, caused by the error
propagate through the program to one or more of its outputs [1, 49].
If not, we call this failed disruption propagation (FDP). We [10] use
information theory [9] to argue if there is information loss (mea-
sured by entropy loss, see Figure 1) on the route between the error
(the infection point) and the program’s output(s), then information
about the error’s disruption may be lost. If all information about
the error is lost, then the program no longer depends on the error
and so the error does not influence the output(s). Meaning the error
does not have an externally measurable impact. That is, the soft-
ware is robust to the error. We also suggest parts of a program may
have more entropy loss, making the code before the high entropy
loss region more robust. (In Section 6 we show this can happen
in real programs, particular in deeply nested software.) Thus the
effectiveness of genetic improvement depends not only on the error
itself but do tests reach it (i.e. execute it), if so, does the test cause
the bug to do something different (i.e. cause an infection) and where
it is in the program, in terms of the test’s subsequent path (execution
trace) to the program’s output(s).
1For example, Peng and Wallace [47, page v] said thirty years ago “errors will probably
occur during software development and maintenance”.
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Figure 1: Left: adding two 8 bit numbers to give 8 bit re-
sult. Information is lost as inputs contain at most 2 × 8 bits
(≤ 16 bits) of information and output can contain at most
8 bits. Right: red 0–9 actual distribution of 0-9 digits in 37
VIPS C source files. Dashed blue 0–18 distribution if they
are added. Although the output of + is wider and has higher
entropy (3.75), it is smoother and has less entropy than the
combined entropy (5.76) of the two inputs to +. (Example
expanded in Appendix A.)

In a strictly hierarchical system (see Figure 1), information only
passes up through the hierarchy and once lost cannot be recovered.
In terms of traditional genetic improvement (GI), if the disruption is
lost before it reaches a measuring point (e.g. the program’s output
or a test oracle [32, 54]) there is no fitness signal and the GI has
little chance of improving the code.

Niedermayr and Wagner [46] have already shown with Java
mutation testing that there can be a strong relationship between
the shortest path (their “minimal stack distance”) from the test
function (itself a Java method) to the mutated function and the
effectiveness of the test. Notice, although they do not consider
information theory, by using the shortest path they build in the
assumption that test effectiveness falls with distance. Whereas we
use the actual runtime nesting depth at which the mutation is
executed2. In our C experiments there are no test methods, instead
we use external test inputs and outputs and test the whole program.
Thus, when we use the total nesting depth, it is akin to their stack
distance but using the C main function instead of their Java test
method. Also their JUnit tests have a maximum shortest path of 17
(average 8) [46, Fig. 3] whereas Magpie mutated VIPS code to a
depth of up to 56 (Figures 4 and 5).

In low resolution systems we would expect more information
loss. For example, in a system composed of only single bit logic gates,
it may be difficult for disruption caused by an error to progress
through many gates. For example, if the disruption signal encoun-
ters an And gate whose other argument is zero, then the gate’s
output is zero regardless of the disruption. That is, information
about the error cannot propagate past the And gate. In general, the
longer the path between the disruption and the GI’s test point (test
oracle) the more chance of entropy loss and so there is more chance
that the disruption signal will not propagate.

In higher resolution system, e.g. 8 bit char (Figure 1) and 32 bit
integer (which are the predominant types in our example, see Sec-
tion 7.4), the information loss may be slower than in Boolean sys-
tems but, in general in hierarchical systems, it will occur. For exam-
ple a multiplication operation (which scales the disruption signal)

2We use GNU libc backtrace to give depth of function nesting at run time.

will destroy the signal if the multiplication’s other argument is
zero. Moreover any digital system is liable to lose information (only
reversible computation does not lose information [24]). For exam-
ple x = a + b with a = 2,b = 3 and a = 1,b = 4 both set x to 5.
That is, given the current value of x (5) we cannot infer the val-
ues of a and b. Note that, there was more information before the
addition than afterwards. Even floating point arithmetic, which is
designed to extract the maximum practical resolution from 32 bits,
can lose information. For example, rounding error causes infor-
mation loss [25]. With 32 bit IEEE floating point, x = a + b with
a = 5.0,b = 0 and a = 5.0,b = 10−7 both set x to 5.0, so again
information has been lost: from the output of the addition operation
we cannot infer the values of its inputs.

Fitness landscape analysis is a relatively well studied topic in ar-
tificial evolution [41], however there is until now little work on the
fitness landscape of real programs [48]. Some studies of C programs
include [33, 39, 56, 57], where we enumerated the complete mu-
tation landscape for the triangle program. In contrast Haraldsson
et al. [18] used random walks to sample the fitness landscape for
three fragments of python programs. Gabin An et al. [15] suggested,
at least for PyGGI [16] and automated program repair, that AST
mutations could be more effective than those acting directly on the
source code. (Note here we use Magpie’s AST mutations). While
Smigielska et al. [53] analysed PyGGI [16] mutations for bug fixing
on several Java QuixBugs programs.

Notice none of the above were interested in depth of nesting.
Indeed researchers are usually interested in the size of programs
rather than their depth [6, p15]. We did some work on integer [26]
and floating point [28] functions, where fault masking could be
total if the program nesting was deep enough, however all were ar-
tificially evolved (genetic programming [22, 50]) not real programs.
For details see Section 7.4 in the discussion.

The next three sections describe how we use the Magpie GI tool
(Section 3) to uniformly sample the space of mutations of the deeply
nested VIPS C benchmark, including the fitness function (Section 4)
and parameters (Section 5). Section 6 gives our results, including
that only 17% of mutants fail at run time. Whilst Section 7 discusses
Magpie on this bench mark. Finally we conclude (Section 8) that
C software is robust to many AST based mutations and that failed
disruption propagation (FDP) occurs more frequently with deeply
nested mutants, making any form of test based automatic software
engineering (such as genetic improvement) potentially more diffi-
cult in deeply nested code. Appendix A gives an information theory
based explanation for FDP and mathematical formulae about it and
entropy in special types of nested software.

3 MAGPIE
Magpie was initially released in 2022 as an open source project on
GitHub3. As of 2 October 2023, including examples and documenta-
tion, Magpie contained 3781 lines of code, mostly written in Python.
It contains examples in Python, C, C++ and Ruby.

3https://github.com/bloa/magpie 2 October 2023
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3.1 PARSEC VIPS Benchmark
The VIPS image processing benchmark [43] is part of PARSEC
(Princeton Application Repository for Shared-Memory Computers),
which was devised as a benchmark to measure hardware perfor-
mance on emerging workloads [2, page 73]. The PARSEC bench-
mark is often used, e.g. [7, 8, 13, 51, 52]. Indeed we used it in [35].
We downloaded the 64bit X86 version of PARSEC 3.0 from GitHub4
and extracted the VIPS library from it. The VIPS thumbnail bench-
mark is often used but here our use is totally different. We do not
want to automatically fix bugs but instead we use it as an example
of highly nested well engineered software to demonstrate the effec-
tiveness of Magpie’s mutations and in particular how this varies
with depth of procedural nesting in a multi-threaded parallel envi-
ronment. Schulte et al. found significant improvements using their
GOA [52]. GOA is a fitness driven evolutionary GI tool and so does
not sample uniformly. As [52] does not report nesting depth, it may
be that GOA found it easier to evolve the shallower parts of their
VIPS.

3.2 Thirty Seven C Source files
We again use our VIPS C benchmark [35, Sect. 4.1]. VIPS is a large C
library. Only a fraction of VIPS is used by each application. We took
the VIPS thumbnail benchmark and instrumented it to select those
source files which it uses on the test case (described in Section 4.1).
Individual VIPS C source files were selected in two ways and then
the union of the two taken. Firstly: the Linux perf tool was run
at its maximum sampling frequency (40 kHz) ten times. All the
functions perf profiled were included. Secondly: in all perf runs, the
shrink_gen function stood out as consuming the most CPU time.
Using the GDB debugger and setting a break point at shrink_gen
the VIPS code was run multiple times and all the nested functions
from main to shrink_gen were recorded. Despite non-deterministic
multi-threading, this function nesting proved to be stable across
multiple debugger sessions. Combining both approaches to find
important functions lead to the identification of 37 source files. They
also contain functions which are not used here. Automatically, at
the individual function level, unused code was removed before
presenting the source code to Magpie. Note this is only done to
the function level. The C code to be mutated still contains some
examples of if branch and case statements which are not used.

4 FITNESS FUNCTION
We are not attempting to improve the VIPS C code but to mea-
sure the impact of mutating it. Nevertheless we treat it as if we
were running Magpie normally and supply it with a formal fitness
function.

For each mutation we want to know:

(1) does it compile and link without error.
(2) does it run and terminate (within a two second time out5).
(3) does the program fail with an exception or error message.
(4) does the mutated program exit with a non-success exit status.
(5) does it generate an output and if so is the output mutated.

4https://github.com/bamos/parsec-benchmark/ 16 October 2023
5A unix limit filesize on the output was not needed.

Figure 2: 128×96 thumbnail image generated by VIPS.

4.1 Test Case
We used a GI benchmark PPM image (see Figure 2) [31, 35]. VIPS
takes as input the 3264×2448 image (23 970 833 bytes) and generates
a 128×96 PPM image as output (36 919 bytes) https://github.com/
wblangdon/vips

5 MAGPIE SEARCH
Magpie has the ability to search using genetic programming [4] or
local search [5] and to operate either in line mode or, as we used
here, to treat the source files as AST trees. First the 37 C source files
were converted to XML using scrml version 1.0.0. The ability to mu-
tate and crossover XML gives Magpie the ability to work with any
programming language. We sampled uniformly the impact of Mag-
pie’s seven common mutation operators 1000 times. Three operate
at the C statement level: (StmtReplacement, StmtInsertion, Stmt-
Deletion) and four make changes to parts of expressions (Compar-
isonOperatorSetting, ArithmeticOperatorSetting, NumericSetting,
RelativeNumericSetting). For example, RelativeNumericSetting can
change a value in the source code by 50%.

The Magpie parameter max_steps was set to one. Meaning each
time Magpie created uniformly at random independently of execu-
tion depth of nesting a single mutant and tested it. For simplicity,
warmup was left at 3, which means before each run, Magpie runs
the non-mutated code three times. This is its standard noise sup-
pression value6. Thus, Magpie created and tested the software four
times for each mutation. The other Magpie parameters were left at
their defaults.

Magpie used a mostly idle 32 GB 3.60 GHz Intel i7-4790 desk-
top CPU running networked Unix Centos 7, using Python 3 ver-
sion 3.10.1 and version 10.2.1 of the GNU C compiler. On average,
on a single 3.6GHz core, generating, compiling and testing each
mutation takes, 2.453 seconds.

6 RESULTS
The results are summarised in Tables 1 and 2, whilst Figures 4 and 5
consider the variation of the impact of errors with stack depth.

Of the 1000 Magpie XML mutants, there are 302 which failed
to compile (2nd row in Table 1). These fall into 38 different classes.
There are 177 compilation errors due to bad use of variable names,
such as undeclared variables. The other 125 are essentially syntax
errors. We discuss problems with moving variables out of their
declaration scope in Section 7.3. It is surprising, given that Magpie

6It is possible to reduce (or increase) Magpie’s pre-testing using its [search]
warmup = n parameter (note n ≥ 1).
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Table 1: 1000 random Magpie VIPS mutants

Compiled, ran and produced correct output 526
Failed to compile 302
Failed to run correctly or gave incorrect output 164
Magpie TypeErrora 8

a Magpie XML TypeError may have been fixed. GitHub commit b0ad2c1 (Oct 17, 2023)

Table 2: Details of Magpie 1000 VIPS mutants given in Ta-
ble 1. Top two rows refer to the 526 successful mutants.
Other seven are the 164 mutants which failed or gave bad
output. Middle four rows mutants gave a non-success termi-
nation status.

Correct output 438
Mutation is identical to original code 88
Runtime error 134, e.g. assert, double free, mutex error 40
Exceed 2 second timeout 25
Segmentation error 22
Floating point error 4
VIPS detected error, e.g. No such file or directory 36
No error reported but output error 19
No error reported but output changed 18

is using XML and so is effectively operating at the program’s AST
level, that more than 12% of mutants fail to compile with syntax
errors. Examples include pasting a well formed if statement into a
struct data structure and replacing the minus sign in a negative
constant (e.g. -1) with an arithmetic operator (e.g. /) giving rise to a
syntax error (e.g. return /1;).

The last row in Table 1 says that there were 8 mutants where
Magpie failed with an internal TypeError. It may be that these
successfully passed the fitness tests. However it seems safest to
exclude them. We also exclude the 88 identical mutants (second
row in Table 2). So Tables 1 and 2 show 438 of 602 (1000-8-88-
302), (i.e. 73%) of unique mutants which compile, produce the right
output.

The middle four rows in Table 2 show 91 (55%) of the 164 mutants
which compiled but gave bad results, failed whilst running. The
last three rows in Table 2 show 73 (45%) of the erroneous mutants
which ran either: VIPS detected an internal error (36 22%), the
output was not generated (19 12%) or the image was created but
was not the same as the original (18 11%). In six cases the output
was the wrong size. But in 12 of the 18 cases where an incorrect
output was generated the output was the right size. In some cases
the incorrect output resembles the correct image (Figure 3) but
in others although the image header in the output is correct, the
image’s content is totally scrambled. Notice Figure 3 indicates a
different type of software robustness: although it is different from
the correct output and thus fails the fitness test, visually it is “close”
to the expected answer (Figure 2) and so might be acceptable.

6.1 Failed Disruption Propagation (FDP)
When considering failed disruption propagation in real code: dis-
ruptions to the program’s internal state due to Magpie mutations
which cause C exceptions or for which VIPS itself reports an error,
are caught by special mechanisms which immediately terminate
the program and so the disruption does not propagate through the

Figure 3: Almost all mutants which produce output, give
images which are identical to Figure 2. Above is a similar
but different mutant image.

program in the normal way (rows 3–7 in Table 2). The last two rows
in Table 2 contain 37 mutations which either: caused the output not
to be created or to be different in some way from the usual output.
We uniformly at random selected 25 of these (blue cross hatch in
Figures 4 and 5).

From the mutants which did produce the right output (top row
of Table 2), we uniformly at random selected 25 where: the modified
code was executed and it changed the program’s state or flow of
control (shaded pink in Figures 4 and 5). (See also Table 3.) For
both the selected 25 ok and 25 non-exception mutants (previous
paragraph) we instrumented the mutation site to record how many
times its execution made a difference and how deep in the function
call hierarchy it was when it was executed.

The function containing the mutated code can be called mul-
tiple times and from different positions and hence the depth of a
particular disruption typically varies during execution. (Perhaps
due to use of multiple threads introducing non-determinism, there
is sometimes a small variation between runs.) Although typically
executed many times, in principle, only a single disruption need
reach the output for the mutation to fail the test (Section 4) (blue
hatching in Figures 4 and 5).

Note Figures 4 and 5 do not distinguish between levels of severity
of the damage to the output. Either the mutant passed the test (pink)
or it did not (blue hatch).

The histograms in Figure 4 are normalised so that if a mutation
is executed and causes a change of state at different depth (plotted
along the x-axes) the vertical height (y-axes) is plotted in propor-
tion to the number of disrupting executions for that depth. This
ensures that the area allocated to each of the (25+25) mutations
plotted in Figure 4 is the same. Thus two mutations which both
failed a test but one is executed many thousands of times and the
other only once, are plotted in the same way. Disrupting executions
of the same type (pass/failed) at the same depth are stacked on top
of each other. For example in Figure 4, the peak (y=6) at depth x=8
represents all the failing disruptions at depth 8 across the 25 muta-
tions randomly sampled from the 37 which failed without raising
an error or exception7.

The same data are presented in Figure 5, however the vertical (y)
axis now represents the number of perturbations. That is, they-axes
shows the sum of all the disruptions of the same class (pass/fail)
7Actually 8 failing mutations introduce a disruption at depth 8. However 4 of these
also cause disruptions at another depth. In this example, the 4 disrupt depth 8 exactly
half the time, so giving y = 6 = (4 + 4 × 1

2 ) plotted in Figure 4.
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Figure 4: 25 mutations which change internal state but out-
put is unaffected (shaded pink) and 25 which change output
(pattern) without raising an exception or reporting an error.
(See Section 6.1.)
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Figure 5: 25 mutations with no impact and 25 which change
output. Same data as Figure 4. The vertical axis is truncated
to 0–450, as otherwise perturbations which cause errors to
the output (blue hatching) nested 13 functions deep x=13
(8453) and x=24 (181952), would dominate all the other data.
(Graph described in Section 6.1.)

at the same depth (again disruptions which do reach the output
are shown with blue hatching). Taking the example of the five
failing mutations which change state at depth 24 (peak “181952” in
Figure 5): two of them disrupt only at depth 24 (both infect 35 968
times); the other three disrupt at two or three depths (96, 96 and
109 824 at depth 24); total 181 952.

Notice failing mutations are typically executed causing disrup-
tions more times and closer to the top of the stack (which in C
means the main() function, depth 1). Whereas although disruptions
which fail to propagate (FDP, pink shaded in Figure 5) can occur at
a range of nesting levels, they predominate at depths greater than
30. I.e. there is more pink than blue right of x=30 in Figure 5.

Table 3: 91 randomMagpie VIPSmutants without error. The
first column says if the modified code is executed or not.
“na” indicates that the mutant may or may not have been
run, but in either case it cannot infect the state, e.g. replac-
ing 0 by 0*3/2. 25 of 91 (27% ± 5%) mutants are executed and
disrupt the program at least once.

Executed Infected count fraction
N N 45 49% ± 5%
na N 13 14% ± 4%
y N 8 9% ± 3%
y y 25 27% ± 5%

91

We can estimate the fraction of FDP using data gathered from
the non-error mutants when we sought our random sample of 25
mutants which did cause disruption but did not cause an error (see
above). Table 3 considers 91 uniformly random chosen non-identical
mutants of the 438 which run without error (first row Table 2).
25 of the 91 are executed and disrupt the program but do not change
the output. This is 27% of the sample, which corresponds to 120±21
in 438. In other words, for our VIPS about 12% ± 2% of Magpie
mutants show failed disruption propagation (FDP). As mentioned
in Section 3.2, in prior work [35] we already removed 2501 unused
lines of C code (23%). Thus roughly in Table 3 we would expect the
first two rows (corresponding to non-executed code) to increase by
about 23%, and so the FDP rate for Magpie XML mutations to fall
by about 23% to about 9% ± 1.6% in deeply nested C code. Similarly
restoring the known to be unused code would increase the fraction
of “neutral” mutations by about 23% to well over half, cf. top row
of Table 1, making it still harder to make meaningful changes.

7 DISCUSSION
7.1 VIPS Typical of C Code?
Typically VIPS is composed of small functions which themselves
are not deeply nested. Therefore it seems reasonable to use the
depth of function nesting (i.e. position in the call stack) to serve as
a proxy for the actual depth of nesting.

VIPS is typical of C programs. It uses both pointers to read and
write data outside the current function and the function’s own
arguments and return value to pass information into and out of
functions. That is, data and hence information flow is not tied ex-
actly to control flow and the hierarchy of nested function calls.
Nevertheless our results suggest in real code deeply nested func-
tions can correspond to some extent to information loss regarding
disruption caused by deeply buried errors.

7.2 Magpie identical Patches
The second row of Table 1 shows 9% of Magpie mutations are
identical to the original code. It is therefore no surprise that they
compile, run and generate identical output. Identical mutations
are produced by XML operation ArithmeticOperatorSetting which
only has 5 choices (+, −, ∗, /, %). So, for example, if the existing
arithmetic operator is + there is a 1/5 chance that Magpie will
replace + with another +, meaning no change is made. Whereas,
although it is possible, the other XML changes are very unlikely
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to replace the original XML with an identical copy. We observe 9%
(rather than 1/5) because there are several other mutation operators
as well as ArithmeticOperatorSetting (see Section 5).

It might be easy to force Magpie to ensure that new source code
is different from the previous (parent) code. This seems like an
obvious improvement, particularly for hill climbing local search.
For population based search (i.e. genetic programming) these iden-
tical mutations represent a source of neutral moves [3, 51, 55], so
removing them would change population dynamics, however it
seems in general that removing them would not have a deleterious
effect.

7.3 Magpie undeclared Variables
We saw in Section 6 that 18% of Magpie mutants fail to compile
because the mutation has moved an existing variable out of scope.
Usually a mutation failing to compile is a relatively cheap part of
the fitness function. However the fraction of scope errors could
potentially be addressed by:

• Restricting XML based mutations to copying source material
within the same source file [38].

• Addition of new Magpie scope validity checks [37].
• Use SBSE [19] search techniques (such as genetic program-
ming) to fix up variable names [42].

Moreover, as we did previously, e.g. [23], to further reduce the
cost of erroneous mutations, we use the GCC command line op-
tion -fmax-errors=1 to stop the compiler immediately it discovers
a single error.

7.4 VIPS few continuous types
Of the 1247 variables declared in our 37 C files, only 33 (2.6%) are
continuous (float or double) or pointers to continuous variables.
The other variables are discrete types (e.g. int, char, and application
specific discrete types), indeed 69% are pointers to discrete variables.
Like VIPS, many programs have few continuous data.

We would expect wide continuous data (e.g. 64 or 128 bit dou-
bles) to be better at transmitting disturbances in information flow
from one part of a program to another. It may be in some classes
of program, which have many continuous variables, much deeper
nesting will be needed to get the levels of fault masking seen here.
However, albeit in a purely functional (Lisp) setting with 32 bit
precision (float) we [27–29, 36] showed almost complete failure for
sizeable disruptions to propagate to the output in very deep pro-
grams. Note we were concerned with functions evolved by genetic
programming [22, 50], whereas here we deal with real programs
written in C with data flows which do not slavishly follow the
nested hierarchy of the procedure calls.

8 CONCLUSIONS
There are sound information theoretic reasons for expecting deeper
software to be more robust (Section 2 and Appendix A). Although
it is possible for information to flow through global shared data
and so short circuit the hierarchy of nested functions, nonetheless
we see a relationship between failed disruption propagation (FDP)
and depth of program nesting in an imperative C program with a
mixture of types (bytes, int, etc.) and scalars, pointers, arrays and
compound data types (C struct).

Although it is disappointing to find 30% (Tables 1) of our muta-
tions fail to compile, usually it is relatively cheap to detect compila-
tion errors. (Sections 7.2 and 7.3 suggest potential improvements
to Magpie.) If we exclude compilation errors, Magpie TypeError
(Table 1), null mutations (Table 2) and take into account the unused
functions (Section 3.2) about 90% of the time the code is robust to
random code changes.

Most of the robustness is simply due to the mutation site not
being executed (covered by tests). In perhaps another 9% or more,
the mutant is exercised but has no impact (equivalent mutations
are well known in mutation testing [59].) However we also find a
significant proportion of FDP. Meaning, even if a perfect (possibly
huge) test suite could be devised which covered the whole of the
source code (i.e, “E” = 100%): the other two aspects of Voas’ PIE
framework [58] (“P” and “I”) would still apply. If the new tests exe-
cute the code similarly to the existing tests, we would expect to find
about (Table 3) 9% ± 3% of the time no change of state (“I”nfection)
and 27% ± 5% FDP (incomplete “P”ropagation, total 36%), leading
to the code passing the whole test suite.

Robust software continues operating despite errors, making it
difficult to test and optimise. However, Schulte [51] and others have
shown blackbox fitness driven optimisation can be applied to a
wide range of programs. Nonetheless we suggest that it may be for
larger, and especially deeper programs, far greater use of white box
approaches with extensive internal instrumentation and closely
packed and more sophisticated test oracles, will be needed by both
automated testing and genetic improvement.

The fraction of failed disruption propagation (FDP) we see here
is liable to be specific to the bench mark code and we would ex-
pected variation across applications and programming languages.
Nonetheless we anticipate FDP, especially in deeper programs, is
important to software robustness.

ACKNOWLEDGMENTS
I am grateful for the help of Aymeric Blot and the anonymous
reviewers.

A LARGE EXPRESSIONS INFORMATION LOSS
Figures 6 and 7 expand the example in Figure 1 to a multiple level
expression. As we proceed up the expression towards the output,
as expected, we see information loss and so entropy falling. The
expression has 6 inputs, each drawn from the same 0-9 distribution
(the solid red line in Figure 7) and so (as in Section 2) each has en-
tropy Ho = 2.88 bits. As the inputs are independent, the combined
information content of the six digits is 6× 2.88 = 17.29 bits. Adding
two digits together gives a value in the range 0–18 (entropy 3.75,
shown with dashed dark blue line in Figure 7). Although the blue
line covers more values (0–18 v. 0–9) it is smoother than the orig-
inal distribution (red line). The purple line shows the impact of
multiplying the result of adding two digits by a third, giving values
in the range (0-162, entropy 4.46). Notice further information loss
indicated by total entropy falling again. Finally the light blue dotted
line, the output, again shows the smoothing effect of addition and
again total entropy falls (from 6 × 2.88 = 17.29 to 6.02 bits).

As we said in Section 2 all operators commonly used in program-
ming lose information (i.e. are not reversible). In nested expressions
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this loss is cumulative. So typically deeper expressions lose more
information. In some special cases we can be precise.

In the case of the addition of n independent values, the mean is
the sum of the individual means and similarly the variance is the
sum of their variances. As n increases (by the central limit theorem)
the output distribution will approach a Normal (Gaussian) distribu-
tion N (m,σ 2). Where the mean ism and the standard deviation is
σ (σ 2 = the variance). N (m,σ 2) has entropy log2(σ ) + 2.0471 bits.

In practice, assuming the individual distributions are not too dif-
ferent and not too asymmetric, the output distribution approaches
N (m,σ 2) rapidly (see Figures 8 and 10). Assume the inputs all
come from the same distribution, with meanmo and standard de-
viation σo . So mean = n ×mo and variance σ 2 = n × (σo )

2, so
σ =

√
n × σo . Figure 8 plots the actual distributions for various

numbers of independent inputs drawn at random from the distri-
bution of 0-9 digits in the VIPS C source code used by Magpie. As
expected, the mean and standard deviation followm = n ×mo and
σ =

√
n ×σo (wheremo = 2.53997 and σo = 2.75424). The standard

deviation is plotted with a dotted line in Figure 10 (note log scales)8.
As n increases, then not only does the mean of N (m,σ 2) increase

but more importantly so to does its width σ . If we now consider
that in a computer we are doing our calculations with a limited
number of bits, so the infinite precision idealised N (m,σ 2) has to
be mapped into finite arithmetic. Suppose we use 8 bit integers,
then then whole of N (m,σ 2) is mapped onto 0–255 (see Figure 9).
Regardless of the meanm, if the standard deviation σ is large com-
pared to 255 then mapping the nicely curved distribution will lead

8A small animation of the output of expressions converging as they get bigger to
the Gaussian distribution can be found on line via http://www.cs.ucl.ac.uk/staff/
W.Langdon/icse2024/langdon_2024_GI/add10.html
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Figure 6: Example expression (a+b)c+d(e+f), of random (0-9)
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Figure 7: Distribution of values at each level in Figure 6.
First two plots (red and blue) same as 2 plots in Figure 1. 8 bit
precision, hencemax entropy 8 and horizontal cut off at 255.
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Figure 8: Distribution of values of adding randomdigits (0-9)
from the VIPS source code. Note non-linear axis.
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Figure 9: As Figure 8 but in 8 bits, hence cut off at 255
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Figure 10: Standard deviation and entropy of adding 0–9.
Figure 8 upper red convergence to Gaussian, entropy
log2(σ ) + 2.0471. Figure 9 lower blue, forced into 8 bit arith-
metic sum converges to uniform 0–255, entropy 8 bits.

to an almost uniform distribution across 0–255 (with an entropy
of 8 bits). (Actually we get close, 3 significant digits, of a uniform
distribution when σ is only 174.) Mathematically, if

√
n × σo ≫ 256

the entropy of the sum will be ≈ 8 bits and the information loss
will be ≈ nHo − 8 bits, i.e. almost all the input information is lost.
Figure 10 shows for large n the theory agrees with actual values.

Finally: if the inputs to the expression are nicely behaved (mean-
ing we can always take their logs) then the above argument can be
extended to expressions with just multiplications. By taking logs,
the expression changes from a series of multiplications of inde-
pendent values to a sum of logs of independent values. Meaning
we can again use the central limit theorem to argue that the sum
will approach a Normal distribution, i.e. the product approaches
a Log Normal distribution, with known information content as
measured by entropy.
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