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Abstract Previous studies have shown that Automated Program Repair (apr)
techniques suffer from the overfitting problem. Overfitting happens when a
patch is run and the test suite does not reveal any error, but the patch actu-
ally does not fix the underlying bug or it introduces a new defect that is not
covered by the test suite. Therefore, the patches generated by apr tools need
to be validated by human programmers, which can be very costly, and prevents
apr tools adoption in practice. Our work aims at increasing developer trust
in automated patch generation by minimizing the number of plausible patches
that they have to review, thereby reducing the time required to find a correct
patch. We introduce a novel light-weight test-based patch clustering approach
called xTestCluster, which clusters patches based on their dynamic behav-
ior. xTestCluster is applied after the patch generation phase in order to
analyze the generated patches from one or more repair tools and to provide
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more information about those patches for facilitating the patch assessment.
The novelty of xTestCluster lies in using information from execution of
newly generated test cases to cluster patches generated by multiple APR ap-
proaches. A cluster is formed with patches that fail on the same generated test
cases. The output from xTestCluster gives developers a) a way of reducing
the number of patches to analyze, as they can focus on analyzing a sample of
patches from each cluster, b) additional information (new test cases and their
results) attached to each patch. After analyzing 1910 plausible patches from
25 Java apr tools, our results show that xTestCluster is able to reduce the
number of patches to review and analyze with a median of 50%. xTestClus-
ter can save a significant amount of time for developers that have to review
the multitude of patches generated by apr tools, and provides them with new
test cases that show the differences in behavior between generated patches.

1 Introduction

Automated program repair (apr) techniques generate patches for fixing soft-
ware bugs automatically [1,2]. The aim of apr is to significantly reduce the
manual effort required by developers to fix software bugs. However, it has
been shown that apr techniques tend to produce more incorrect patches than
correct ones [3,4,5]. This issue is also known as the overfitting (or test-suite-
overfitting) problem. Overfitting happens when a patch generated automati-
cally passes all the existing test cases yet it fails in presence of other inputs
which are not captured by this test suite [6]. This happens because the test
cases, which are used as program specification to check whether the generated
patches fix the bug may be insufficient to fully specify the correct behavior of
a program. As a result, a generated patch may pass all the existing tests (i.e.,
the patch can be a plausible fix), but still be incorrect [7].

Due to the overfitting problem, developers have to manually assess the
generated patches before integrating them to the code base. Manual patch
assessment is a very time-consuming and labor-intensive task [8], especially
when multiple plausible patches are generated for a given bug [3,9]. To alleviate
this problem, different techniques for automated patch assessment have been
proposed. Filtering of overfitted patches can happen during patch generation,
as part of the repair process (e.g. [10]), or as part of the post-processing of
the generated patches (e.g. [11,12]). Typically, such techniques focus on the
prioritization of patches. The patches ranked at the top are deemed to be the
most likely to be correct. Existing approaches often rank similar patches at
the top [3] and as a result waste developers’ time if the top-ranked patches are
overfitted. Furthermore, such approaches might require an oracle [13], or (often
expensive) program instrumentation [12], or a more sophisticated machine
learning process [11].

To alleviate these issues, we present a light-weight patch post-processing
technique, named xTestCluster, that aims to reduce the number of gener-
ated patches that a developer has to assess. Our technique clusters plausible
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repair patches exhibiting the same behavior (according to a given set of test
suites), and provides the developer with fewer patches, each representative of
a given cluster, thus ensuring that those patches exhibit different behavior.
Our technique can be used not only when a single tool generates multiple
plausible patches for a given bug, but also when different available apr tools
are running (potentially in parallel) in order to increase the chance of finding
a correct patch. In this way, developers will only need to examine one patch,
representative of a given cluster, rather than all, possibly hundreds, of patches
produced by apr tools.

Our clustering approach xTestCluster exploits automatically generated
test cases that enforce diverse behavior in addition to the existing test suite, as
opposed to previous work (including Mechtaev et al. [14] for patch generation
and Cashin et al. [15] for patch assessment) that use solely the existing test
suite written by developers. Our approach has the main advantage that it
does not involve code instrumentation (aside from patch application) nor an
oracle or pre-existing dataset to learn fix patterns. Moreover, xTestCluster
is complementary to previous work on patch overfitting assessment, as it can
apply different prioritization strategies to each cluster.

xTestCluster works as follows: First, xTestCluster receives as input
a set of plausible patches generated by a number of selected apr tools and it
generates new test cases for the patched files (i.e., buggy programs to which
plausible patches have been applied to) using automated test-case generation
tools. The goal of this step is to generate new inputs and assertions that ex-
pose the behavior (correct and/or incorrect) of each generated patch. Second,
xTestCluster executes the generated test cases on each patched file to de-
tect any behavioral differences among the generated patches (we call this step
cross test-case execution). Third, xTestCluster receives the results from the
execution of each test case on a patched version of a given buggy program, and
uses the names of the failing test cases to cluster patches together. In other
words, patches from the same cluster exhibit the same output, according to
the generated test cases: they fail on all the same generated tests. Patches
that pass all the test cases (no failing tests) are clustered together. Finally,
xTestCluster automatically selects one single patch from each cluster to
show to the user.

In order to evaluate our approach we gathered recorded plausible patches
from the literature that had been labeled as correct and/or overfitted (usually
via manual effort). Overall, we gathered 1,910 plausible patches (679 correct
and 1,231 overfitted) for bugs from v.1.5.0 of the Defects4J data set [16],
generated by 25 different apr tools. After removal of duplicates, we used two
automated test-case generation tools, Randoop [17] and EvoSuite [18], to
generate test cases for our patch set. Finally, we cluster patches based on test
case results. To our knowledge, xTestCluster is the first approach to analyze
together patches from multiple program repair approaches generated to fix a
particular patch. This is important because it shows that xTestCluster can
be used in the wild, independently of the adopted Java repair tools.
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Algorithm 1 xTestCluster
1: Input: B a buggy program, Ps plausible patches of bug B, TGs test-case generators,

S selection heuristic.
2: TCG← testGeneration(B,Ps, TGs) {(Alg. 2)}
3: ResPatchesexec ← testExecution(B,Ps, TCG) {(Alg. 3)}
4: clusters← clustering(Ps,ResPatchesexec) {(Alg. 4)}
5: selectedPatches← selectPatches(clusters, S) {(Alg. 5)}
6: return selectedPatches

Our results show that xTestCluster is able to create at least two clusters
for almost half of the bugs that have two or more different patches. By having
patches clustered, xTestCluster is able to reduce a median of 50% of the
number of patches to review and analyze. This reduction could help code
reviewers (developers using automated repair tools or researchers evaluating
patches) to reduce the time of patch evaluation. Additionally, xTestCluster
can also provide code reviewers with the inputs (from the generated test cases)
that trigger different program behavior for different patches generated for one
bug. This additional information may help them decide which patch to select
and merge into their codebase.

Overall, the paper provides the following contributions:

– A novel test-based patch clustering approach called xTestCluster. It is
complementary to existing patch overfitting assessment approaches. xTest-
Cluster can be applied to patches generated by multiple APR tools.

– An implementation of xTestCluster for analyzing Java patches. It uses
two popular automated test-case generation frameworks, EvoSuite [18]
and Randoop [17], and a light-weight patch-length-based selection strat-
egy. The code of xTestCluster is publicly available [19].

– An evaluation of xTestCluster using patches from 25 apr tools, and
1910 plausible patches.

All our data is available in our appendix [19].

2 Our approach

Our proposed approach, xTestCluster, for test-based patch clustering is
shown in Figure 1.

xTestCluster receives as input a buggy program and a set of plausible
patches that could repair the bug. The patches could have been automatically
generated by one or multiple repair approaches. Additionally, xTestCluster
receives a set of test-case generation tools. Given these inputs, xTestCluster
carries out four steps (lines 3–6 of Algorithm 1): 1) test-case generation, 2) test-
case execution, 3) clustering, and 4) patch selection.

Test-case generation. xTestCluster receives as input the plausible
patches generated by a set of apr tools and generates new test cases for the
patched files (i.e., buggy programs to which plausible patches were applied
to). We use automated test case generation tools for this purpose.
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Fig. 1 The steps executed by xTestCluster.

Test-case execution. xTestCluster executes the generated test cases
on each patched program version: We call this approach cross test-case execu-
tion, because the test cases generated for a given patched program version are
executed on another patched version of a given buggy program. This cross ex-
ecution aims to detect the behavioral differences among the generated patches
that we use in clustering afterwards.

Clustering. xTestCluster receives the results from the execution of
each test case on a patched version of a given buggy program, and uses this
information to cluster patches together: if two patches have the same output
for all the test cases generated, then they belong to the same cluster.

Patch Selection. xTestCluster automatically selects one single patch
for each cluster. This selected patch produces the same program behavior as
all the other patches in a given cluster, with respect to our automatically
generated test set. The selection is done based on a strategy, which is given
as input to xTestCluster. This steps allows xTestCluster to reduce the
number of patches that are presented to the code reviewer.

A code reviewer could be, for example, a software developer that has de-
veloped and pushed a buggy version, which is exposed, for instance, via failing
test cases executed by a continuous integration platform (ci). Without using
xTestCluster, the code reviewer needs to assess patches produced by repair
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Algorithm 2 Test-case Generation
1: Input: B a buggy program, Ps plausible patches of bug B, TGs test-case generators.
2: TCG← ∅
3: for patch ∈ Ps do
4: B′ ← apply patch to B
5: pfiles← getF iles(patch)
6: for tg ∈ TGs do
7: for pfile ∈ pfiles do
8: TCnew ← generateTests(tg, B′, pfile)
9: TCG← TCG ∪ TCnew

10: end for
11: end for
12: end for
13: return TCG

approaches that they have integrated, for instance, in their ci. Using xTest-
Cluster, the code reviewer can, now, review a subset from all the generated
patches, reducing the review effort. Moreover, for each presented patch, they
have also alternative patches (those not selected from the same cluster but
with the same behavior as the selected patch) and information about test-case
executions. All this information could help code reviewer decide which patch
to integrate into the codebase to fix the given bug.

In the next subsections, we detail each step of xTestCluster.

2.1 Test-case Generation

Algorithm 2 details this step. For each patch patch from those plausible
patches received as input (line 3), xTestCluster first applies this patch to
the buggy program B, giving the patched program B′ as a result (line 4).
We recall that the patched program must pass all the test cases provided by
the developer. If the patch does not pass any of those test cases, it is not
plausible and xTestCluster discards it. Then, xTestCluster retrieves
the files affected by the patch (line 5). Using each of the test-case generation
tools (line 6) we have selected, xTestCluster generates test cases for each
of those files that have plausible fixes (line 8). All the generated test cases are
stored in a set called TCG (line 9).

xTestCluster also carries out a sanity check on the generated test cases.
In particular, it verifies that they are not flaky by executing them n times,
and assuring that the results are the same for each execution. Test cases that
do not pass this check are discarded.1

2.2 Test-case Execution

Next, we conduct cross test-case execution. Algorithm 3 details this step.
xTestCluster executes, on a version of the program patched with the patch

1 For simplicity we do not show this check in Algorithm 2.
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Algorithm 3 Test-case Execution
1: Input: B a buggy program , Ps plausible patches of bug B, TCG test cases generated.
2: ResPatchesexec ← ∅
3: for patch ∈ Ps do
4: Rexec ← ∅
5: B′ ← apply patch to B
6: for t ∈ TCG do
7: rest ← execute(t, B′, patch)
8: Rexec ← Rexec ∪ (rest, patch)
9: end for

10: ResPatchesexec ← ResPatchesexec ∪ 〈patch,Rexec〉
11: end for
12: return ResPatchesexec

Algorithm 4 Clustering
1: Input: Ps plausible patches of bug B, ResPatchesexec results of test cases.
2: Cs← ∅
3: for patchi ∈ Ps do
4: if Cs is ∅ then
5: Cs← set(patchi)
6: else
7: Rexeci ← getTestExecution(ResPatchesexec, patchi)
8: foundCluster ← false
9: for cluster ∈ Cs do

10: patcho ← getOne(cluster)
11: Rexeco ← getTestExecution(ResPatchesexec, patcho)
12: if Rexeci = Rexeco then
13: cluster ← cluster ∪ patchi

14: foundCluster ← true
15: break
16: end if
17: end for
18: if foundCluster = false then
19: Cs← Cs ∪ set(patchi)
20: end if
21: end if
22: end for
23: return Cs

patch, the test cases generated by considering other plausible patches for bug
B. In other words, the step applies the Cartesian product between patches
and test cases produced for the patches. To achieve this, xTestCluster
iterates over the patches (line 3). For each patch, xTestCluster applies it
to the buggy program, producing the patched program B′ as a result (line 5).
xTestCluster executes each new test case t generated in the previous step
(set from TCG) over the patched program B′ (lines 6 and 7). All results from
the test-case execution for patch are stored in the map ResPatchesexec (line
10), which is then returned (line 12).

2.3 Clustering
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Algorithm 5 Selection of Patches from Clusters
1: Input: Cs clusters, S selection heuristics
2: selectedPatches← ∅
3: for c ∈ Cs do
4: patches← getPatchesFromCluster(c)
5: selected← selectPatch(patches, S)
6: selectedPatches← selectedPatches ∪ selected
7: end for
8: return selectedPatches

Algorithm 4 details this step. xTestCluster iterates over the patches
(line 3) in order to assign each patch patchi to a cluster. If no cluster has
been previously created (line 4), xTestCluster creates a new cluster that
includes patchi (line 5). Otherwise, xTestCluster first retrieves the results
from the previous, test case execution, step for that patch (line 7). Then,
xTestCluster iterates over the created clusters (line 9). For each cluster,
xTestCluster picks one patch patcho from it (line 10) and retrieves the cor-
responding results from the test case execution step (line 11). xTestCluster
compares the two execution results (line 12): If both patches produce the same
failures on our test set after they are applied to the buggy program, the patch
patchi is included in cluster (line 13). Note that the result of a test case can
be passing or failing. When the result is failing, we also consider the message
associated with the failing assertion or the message associated with an error.
Consequently, patches that do not pass a test case due to different reasons
(e.g., some fail an assertion and others produce a null pointer exception) are
allocated into different clusters. Patches that pass all test cases (this means
that Rexeco at line 11 is empty) are cluster together. If xTestCluster cannot
allocate patchi to any cluster (line 18), it creates a new cluster which includes
patchi (line 19). Finally, xTestCluster returns all the created clusters (line
23).

2.4 Patch Selection

Algorithm 5 details the patch selection step. Given as input a set of clusters
retrieved by the Clustering step (Algorithm 4), xTestCluster automatically
selects one patch from each cluster. For each cluster (line 3), xTestCluster
retrieves the corresponding patches (line 4), and based on a selection strategy
S received as parameter, it selects one single patch (line 5). xTestCluster
can accept any strategy that is able to select one patch from a list of patches.
For example, it could apply simple strategies, e.g., random selection, based on
heuristics (e.g., the length of a patch), or even delegate the selection to other
approaches such as patch ranking (e.g., used by Prophet [10]). Finally, all
selected patches are returned: Those are the patches which are presented to
the code reviewer (line 8). At this point any of the current patch prioritisation
techniques that were proposed in the literature for patch overfitting can be



Test-based Patch Clustering for Automatically-Generated Patches Assessment 9

employed. The question of which one is best in our context we leave for future
work.

3 Research Questions

Our proposal, xTestCluster, aims at aiding code reviewers in reducing the
effort required for the manual assessment of patches automatically generated
by apr tooling. In order to assess how well xTestCluster can achieve this
task we pose the following RQs:

RQ1: Hypothesis Validation To what extent are generated test cases
able to capture behavioral differences between patches generated by apr
tools?

This RQ aims to show the ability of xTestCluster to detect behavioral dif-
ferences among the generated patches based on the execution of generated test
cases, and, from those differences, to create clusters of patches. If successful,
semantically equivalent patches will be clustered together and only one, thus,
needs to be presented to code reviewer from such a cluster.

RQ2: Patch Reduction Effectiveness How effective is xTestClus-
ter at reducing the number of patches that need to be manually in-
spected?

This RQ aims to show the applicability of xTestCluster in order to help
developers reduce the effort of manually reviewing and assessing patches. In
particular, we compare the number of patches produced by all selected APR
tools vs. the number of patches presented to code reviewer if our approach is
used.

RQ3: Clustering Effectiveness How effective is xTestCluster at
clustering correct patches together?

This RQ aims to measure the ability of xTestCluster to cluster correct
patches together. In case each cluster contains only either correct or incorrect
patches, we can simply pick any patch from a given cluster for validation. In
other words, picking any patch from a cluster at the Patch Selection stage
would be sufficient to ensure existence (or non-existence) of a correct patch
among all plausible patches in a cluster during patch assessment. This would
make the runtime of Algorithm 5 be O(c), where c is the number of clusters.
In reality, we expect some clusters will have a mix of correct and incorrect
patches, thereby motivating RQ4.

RQ4: Patch Selection Effectiveness How often does selection of the
shortest patch from a cluster return a correct patch?

This RQs aims to measure the ability of a simple length-based patch selection
strategy to select correct patches from a cluster that has both correct and in-
correct patches. xTestCluster should prioritize correct over incorrect ones.
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In this work we investigate if selection of the shortest patch would be sufficient.
Intuitively, a short patch should also be easier to analyse by a code reviewer.
This approach thus has also been used in apr tooling for prioritizing generated
patches (e.g., in Arja [20]). We also compare this approach with a random
selection strategy. In theory any approach that tackles patch overfitting by
prioritizing patches could be applied at this stage. We leave investigation of
the best approach, that balances effectiveness vs. efficiency, for future work.

4 Methodology

In this section, we present the methodology followed to answer our research
questions.

4.1 Dataset

In order to evaluate xTestCluster we need a set of plausible patches, i.e.,
proposed fixes for a given bug. There are two constraints the dataset needs to
meet. Firstly, as xTestCluster focuses on the reduction of the amount of
patches to be presented to the developers for review, xTestCluster makes
sense only if there are at least two different plausible patches for a given bug.
Secondly, we need to know whether each patch in the dataset is correct or not.
In previous work (e.g., [8]) patches have been labelled (usually via manual
analysis) as either correct, incorrect (or overfitting), or marked as unknown
(or unassessed). We will use the correct and incorrect label terminology, and
only consider patches for which correctness has been established.

We thus consider patches generated by existing repairs tools. In this exper-
iment, we focus on tools that repair bugs in Java source code because: 1. Java
is a popular programming language, which we aim to study, and 2. the most
recent repair tools have been evaluated on bugs from Java software projects.

Since the execution of apr tools to generate patches is very time-consuming
(especially if we consider several repair tools [21]), we use publicly available
patches that were generated in previous APR work. We also decide to rely on
external patch evaluations done by other researchers and published as artifacts
to peer-reviewed publications. This avoids possible researcher bias. Further-
more, it allows us to gather a large dataset of patches, from multiple sources,
and avoid the costly manual effort of manual patch evaluation of thousands of
patches.

Taking all constraints into account, we decided to study patches for bugs
from the Defects4J [16] dataset. To the best of our knowledge, Defects4J
is the most widely used dataset for the evaluation of repair approaches [5,
21,22]. Consequently, hundreds of patches for fixing bugs in Defects4J are
publicly available. We leverage data from previous work that has collected and
aggregated patches generated by different Java repair tools, all evaluated on
Defects4J. We focus on those that, in addition, provide a correctness label.
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Tools
Dataset of Patches

He et al. [8] Liu et al. [22] Kechagia et al. [23]
Correct Overfitted Correct Overfitted Correct Overfitted

ACS [24] 18 5 33 10 - -
Arja [25] 18 171 17 77 - -
Avatar [26] - - 53 67 3 2
CapGen [27] 28 38 - - - -
Cardumen [28] 0 0 5 23 1 1
DeepRepair [29] 5 9 - - - -
DynaMoth [30] - - 4 31 1 3
Elixir [31] 26 15 - - - -
FixMiner [32] - - 52 57 - -
GenProg-A [25] - - 10 49 - -
HDRepair [33] 6 3 - - - -
Jaid [34] 42 39 - - - -
JGenprog [28] 5 7 11 25 0 2
JKali [28] 0 0 8 25 0 2
JMutRepair [28] 0 0 10 23 0 2
Kali-A [25] - - 8 99 - -
kPAR [35] - - 48 94 - -
Nopol [36] 5 6 3 37 0 3
RSRepair-A [25] - - 13 62 - -
Sequencer [37] 17 56 - - - -
SimFix [38] 34 12 54 64 0 2
SketchFix [39] 16 9 - - - -
SOFix [40] 22 2 - - - -
ssFix [41] 15 9 - - - -
TBar [42] - - 84 89 4 1

Total 257 381 413 832 9 18

Table 1 Number of Correct and Overfitted patches for bugs from Defects4J [16] per repair
tool and patch dataset.

We found 3 datasets that met our criteria: 1) DDR by He et al. [8], which
contains patches from 14 repair systems. He et al. [8] classified patches us-
ing a technique called RGT, which generates new test cases using a ground-
truth, human-written oracle patches; 2) one dataset by Liu et al. [22], which
includes patches from 16 repair systems, and manually evaluated the cor-
rectness using guidelines presented by Liu et al. [22]; 3) APIRepBench by
Kechagia et al. [23], which includes patches from 14 repair tools. The patches
were manually assessed.2

Table 1 presents the number of patches per repair tool and dataset. In total,
from the three datasets, we collect 1910 patches. DDR has 638 patches (257
correct, i.e., 40%)3, the dataset by Liu et al. [22] has 1245 patches (413 correct,
i.e., 33%), and APIRepBench [23] has 27 patches (9 correct, i.e., 33%). We
observe that the patches were generated by 25 repair tools. Moreover, patches
generated by 13 out of the 25 tools were only reported in a single dataset. For

2 Kechagia et al. [23] evaluated repair tools using bugs from Defects4J and from other
bug benchmarks. We exclusively focus on patches for Defects4J.

3 The repository of DDR [8] contains extra 625 patches that were unassessed. Conse-
quently, He et al. [8] discarded those patches from their study. Thus, we also discard them
in this work.
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Summary of Bugs #Bugs

Total bugs from Defects4J [16] 375
Total bugs with labelled patches 226
Bugs with one patch 51
Bugs with > distinct one patch 175
Bugs considered by xTestCluster 139

Table 2 Bug summary from Defects4J and their respective patches collected from the
three datasets.

example, patches generated by Elixir [31] were curated and assessed by He et
al. [8] but not by Liu et al. [22]. Inversely, patches generated by FixMiner [32]
were curated and manually assessed by Liu et al. [22] but not by He et al. [8]
This shows the importance of considering multiple sources of patches.

Table 2 presents the number of bugs which the patches from the three
datasets were generated for. Overall, our dataset of patches contains at least
one correct patch for 226 bugs out of the 375 bugs contained in the version
1.5.0 of Defects4J.

For each bug, we carry out a syntactic analysis of patches (using the diff
command) in order to detect duplicate patches produced by two or more repair
tools. This is necessary, as multiple tools can create exactly the same patch.

From the patches gathered for 226 bugs in our dataset, we find that for 51
bugs there is only one single patch. We discard those bugs and their patches
because xTestCluster needs at least two patches per bug. We also dis-
card patches for further 36 bugs for the following reasons: Firstly, patches
for some bugs do not pass the existing program’s test suites, i.e., are not
actually plausible. For instance, for bugs Math-43, Lang-47 and Closure-3 all
collected patches are not plausible. For further 11 bugs (e.g., Math-60, Closure-
133, Closure-10) all patches except for one are not plausible. As we previously
mentioned, xTestCluster needs at least two plausible patches per bug, thus
those bugs are not considered. Wang et al. [43] also reported this issue with the
dataset from Liu et al. [22]. Secondly, we discard bugs and associated patches
if no tests cases are generated by our automated test generation tools. For
instance, Randoop did not produce test cases for the Closure-21 bug. Overall,
we consider 226-51-36 = 139 bugs in the evaluation of xTestCluster.

4.2 RQ1: Hypothesis Validation

In order to answer RQ1, we group patches by bug repaired by the tools. Then,
we apply the algorithm described in Section 2.1. We use two test-case gener-
ation tools: Evosuite [18] and Randoop [17]. For each bug from Defects4J,
we generate test cases for each patched version, i.e., after applying a can-
didate patch to the buggy program, using both tools and a timeout of 60
seconds (test-case generation). Then, we execute the test cases generated on
the patched versions (cross test-case execution). Finally, we cluster patches for
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a single bug by putting together all the patches that have the same results on
the generated test cases, as explained in Section 2.3.

4.3 RQ2: Patch Reduction Effectiveness

To answer RQ2 we take as input the number of clusters generated in RQ1 and
the total number of patches in our dataset per bug. For each bug, we compute
the reduction of patches to analyze per bug B as follows:

reduction(B) =
(#patches for B − #clusters for B)

#patches for B
× 100 (1)

This gives us the % reduction of patches presented to a code reviewer.
Recall that we only present one patch from each cluster to code reviewer,
i.e, #clusters patches. Otherwise, code reviewer would have had to review
#patches per bug.

4.4 RQ3: Clustering Effectiveness

To answer RQ3, we take as input: 1) the clusters generated by xTestCluster
(we recall a cluster has one or more patches), and 2) the correctness labels for
each patch in our dataset (see Section 4.1). We say that a cluster is pure if all
its patches have the same label, i.e, all patches are correct or all patches are
incorrect. Otherwise, we say the cluster is not pure.

For each of the sets of patches per bug, we compute the ability of xTest-
Cluster to generate only pure clusters. Additionally, we compute the number
of bugs having only pure clusters divided by the total number of bugs analyzed.
The larger the result of the computation, the better.

Having bugs with only pure clusters is the main goal of xTestCluster:
If all patches in a cluster are correct, by picking one of them we are sure to
present a correct one to the code reviewer. Similarly, if all patches from a
cluster are incorrect, by picking one of them we are sure to present to the code
reviewer an incorrect patch. In both cases, the reduction of patches presents
no risk and patches can be picked from a cluster in any order, e.g., at random.

From our dataset of patches for 139 bugs, patches for 32 bugs are all correct,
while patches for 42 bugs are all incorrect, leaving 65 bugs for which we have
a mix of correct and incorrect patches – these are the ones we use to answer
RQ3. We apply xTestCluster to the patches for these 65 bugs and check
their purity, i.e., we calculate the number of clusters having all correct or all
incorrect patches, and divide by the number of all clusters for a given bug.

4.5 RQ4: Patch Selection Effectiveness

To answer RQ4, we focus on the clusters marked as not pure in RQ3, as these
clusters contain both correct and incorrect patches. The goal is to select correct



14 Matias Martinez et al.

Bugs under Analysis #Bugs

Bugs with one or more patches 226
Bugs with 1+ syntactically different patches 139
Bugs with multiple patches and clusters 68
Bugs with multiple patches in one single cluster 71

Table 3 RQ1. Generated clusters by xTestCluster per bug using EvoSuite and Ran-
doop.

patches from them. To this end, we perform a preliminary analysis to measure
the performance of two simple selection strategies: random and length-based
selection.

We first conduct an experiment that randomly selects a patch from a clus-
ter. For each cluster, we repeat this 100 times and report the average number
of times that the selected patch is correct (according to the label provided in
our dataset, see Section 4.1).

We also conduct an experiment that selects a patch based on the number
of lines of source code it adds and removes from the original code. We favor
shorter patches, i.e., those that result in least changed lines in the original
code. Preference of shorter patches has been also implemented in previous
work (e.g., [20]). This strategy can select multiple patches, i.e., they all can
have equal length. In this case we report if all such patches are correct or not.

5 Results

In this section we present the results of our experiments with answers to our
research questions.

5.1 RQ1: Hypothesis Validation

As Table 3 shows, xTestCluster is able to generate more than one cluster
for 68 bugs (49%) containing more than one plausible patch. This means that
xTestCluster, using generated test cases, is able to differentiate between
patches whose application produces different behavior.

For 71 bugs (51%), for which we have more than two syntactically different
patches, xTestCluster groups all of them into one cluster. We conjecture
that this could be caused by the following reasons: 1) beyond syntactically dif-
ferences, the patches could be semantically equivalent; 2) test-case generation
tools are not able to find inputs that expose behavioral differences between the
patches; 3) test-case generation tools are not able to find the right assertion
for an input that could expose behavioral differences.

Figure 2 shows the distribution of the number of clusters that xTestClus-
ter is able to create per bug (in total, 139 bugs as explained in Section 4.2).
We observe that the distribution is right-skewed. The most left bar corresponds
to the previously mentioned 71 bugs with one cluster. Then, the number of
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Fig. 2 RQ1. Distribution of the number of clusters per bug. Bugs with a single patch (in
total 41) are discarded.

bugs with n clusters decreases as n increases. For 56 bugs, xTestCluster
generated between two and five clusters, but for 12 bugs, it generates a larger
number of clusters (six or more).

Answer to RQ1. Given 139 bugs with at least two plausible and
syntactically different patches, for 68 of them (49%), xTestCluster
is able to detect patches with different behavior (based on test-case
generation) and group them into different clusters.

By reviewing one patch per cluster, a code reviewer can reduce the time
and effort required for reviewing, since they do not need to review all the
generated patches for 49% of the bugs (68 in total). We also observe that
those 68 bugs with multiple clusters have a median of eight patches (mean
10.5), while the other 71 bugs have a median of three (mean 4.7). This means
that xTestCluster actually helps to greatly reduce the number of patches
required to be reviewed.

5.2 RQ2: Patch Reduction Effectiveness

We report on the percentage reduction in the patches to be analyzed when
xTestCluster is used vs. reviewing all available patches for a given bug.
Figure 3 shows our results.

The median percentage reduction is 50% (mean 44.67%), which means that
for half of the bugs (34) xTestCluster reduces the total number of patches
one needs to analyze by at least 50%. For four bugs the reduction is even larger
(80%).
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Fig. 3 RQ2. Distribution of the percentage reduction of the number of patches to review.
Reduction for a bug B is computed as follows: ((#patches for B - #clusters for B ) /
#patches for B) × 100.

The distribution in Figure 3 also shows that for 14 bugs we achieve no
reduction. That is, for 14 bugs each cluster contains a single patch, thus all
need to be analyzed. Nevertheless, for most of those cases (10), the number
of patches (and clusters) is two. In other words, a code reviewer only needs to
check two patches per bug. Moreover, our approach could help them decide
which is better, as xTestCluster provides test cases on which the applica-
tion of the two patches would produce a different behavior.

Answer to RQ2. xTestCluster is able to reduce by a median of
50% the number of patches to analyze per bug. Thus xTestCluster
could help code reviewers (developers using repair tools or researchers
evaluating patches) to reduce the time required for patch assessment.

The findings discussed thus far already show that our approach could be
very useful to code reviewers. Firstly, it can significantly reduce the number
of patches for review, thus reducing the time and effort required for this task.
Secondly, it can provide code reviewers with test inputs that help differentiate
between patches, thus reducing the complexity of patch review.

5.3 RQ3: Clustering Effectiveness

We now focus on the 68 bugs for which our approach produced multiple clus-
ters. We analyze their purity, i.e., if the patches in a given cluster are all correct
or all incorrect. This will allow us to measure the ability of test-case generation
to differentiate between correct and incorrect patches. Table 4 summarizes our
results.
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Purity of Clusters #Bugs

Only pure (either correct and incorrect) 15
At least 1 mixed cluster 24
Only pure correct 3
Only pure incorrect 26

Total (bugs with multiple clusters) 68

Table 4 RQ3. Classification of bugs based on cluster purity.

We first observe that 29 bugs have either only correct patches (three bugs)
or only incorrect patches (26 bugs), thus all clusters generated for those bugs
are pure by construction.

For 15 out of the remaining 39 bugs, all clusters generated by xTestClus-
ter are pure. This means that xTestCluster is able to distinguish between
correct and incorrect patches.

Producing only pure clusters has two advantages. When selecting patches
from a pure cluster, there is no risk of selecting an incorrect patch over a
correct one. Moreover, if we know that a given cluster only contains correct
patches, we can then safely select a patch from a cluster that satisfies perhaps
an additional criterion, such as readability or patch length.

Answer to RQ3. Based on the generated test cases, xTestCluster
is able to cluster plausible patches in a way that a single cluster will
contain only correct or incorrect patches for 38% of bugs considered.
This signifies that for these bugs, it would be sufficient to assess just one
of the patches from each cluster in order to check whether it contains
a correct patch. Moreover, a code reviewer can choose any patch from
a cluster containing correct patches based on additional criteria that
best fit their codebase.

For 24 bugs (62%) at least one mixed cluster was generated, that includes
both correct and incorrect patches. This means that the generated test cases
are not able to detect the “wrong” behavior of the incorrect patches. In these
cases, xTestCluster needs to apply a patch selection strategy. This step is
further investigated in RQ4.

5.4 RQ4: Patch Selection Effectiveness

Table 5 shows a summary of our results for RQ4. In total, from the results
presented in RQ3 (Section 5.3), xTestCluster generated 27 mixed clusters
for 24 bugs.

We use a length-based selection strategy and compare it with randomly
sampling one patch per cluster (as described in Section 4.5).
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#Clusters

Total mixed clusters 27

Shortest selection strategy

The shortest patches are all correct patches 13 (48%)
1+ correct and 1+ incorrect are the shortest 8 (30%)
Total shortest includes a correct patch 21 (78%)
Random selection strategy
# Times correct is randomly selected (avg.) 13.5 (50%)

Table 5 RQ4. Evaluation of the random and length-based patch selection strategies.

Our results show that the random strategy selects a correct patch with 50%
probability. In particular, from 100 sampling runs, a correct patch is selected
for 13.5 out of 27 clusters on average.

The length-based strategy produces similar results. In total, for 21 mixed
clusters (78%), at least one patch that causes least line changes to the original
code (which we call shortest) is correct. For 13 of these 21 clusters, all the
shortest patches are correct. In the other eight cases, there are multiple shortest
patches not all of which are correct. In particular: in four clusters, at least 80%
of such patches are correct; in one cluster 66% of the patches are correct; in
two clusters half of the shortest are correct; and only in one cluster the shortest
patches are mostly incorrect.

Answer to RQ4. Our results show that the shortest patch selection
strategy selects a correct patch in 50% of cases. This is comparable to
random selection, thus other approaches should be investigated in the
future.

We note that both strategies we tried are quite simple and quick to com-
pute. Therefore, their results allow us to define a lower bound for future
work. We intend to study other, more sophisticated, patch selection strate-
gies, for instance, focused on ranking (e.g. [10]), or on source-code features
and pattern-based learning (e.g., [11,43,44]) in future work. Such strategies
can allow xTestCluster to not only focus on better selection of correct
patches over incorrect ones, but also provide opportunity to select patches
based on other criteria, such as patch readability.

6 Discussion

In this section we provide a deeper analysis of our findings, presenting two
case studies, and an assessment of the performance of the two test generation
tools we used in xTestCluster.

Case Study 1: Chart-26 with all pure clusters. We collected 17 la-
belled patches for the bug Chart-26. After running the generated test cases
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on these patches, xTestCluster created three clusters as follows: xTest-
Cluster first creates one cluster that has exclusively correct patches. Even
though the patches are syntactically different, they have the same semantic be-
haviour. For example, a patch for JAID [34] adds an if–return in Axis.java

file, whereas the patches from TBar [42] add an if guard to the same file.
Then, xTestCluster creates two more clusters, both containing only syn-
tactically different incorrect patches. In one cluster, two patches from JAID
also affect the Axis.java file but introduce incorrect changes such as a vari-
able assignment. Whereas, in the other cluster, all the incorrect patches affect
a different file (i.e., CategoryPlot.java). Overall, xTestCluster not only
clustered correct patches together, but created clusters that contain patches
that are semantically similar, despite having syntactic differences.

Case Study 2: Lang-35 with two pure clusters All the patches for
Lang-35 were labeled as correct in previous work [8,22]. There are two syntacti-
cally different patches that xTestCluster groups into two different clusters.
One patch created by ACS [24], introduces an if condition with a throw state-
ment, while the other patch created by Arja [25], replaces two statements by
using a throws clause. A test case created for the latter patch fails when it is
executed on the ACS patch. Since these the two patches behave differently,
xTestCluster correctly places each in a separate cluster. We conclude that
xTestCluster provides code reviewer with valuable information: It is able
to flag whether the two patches are semantically different, and to provide them
with the test inputs (encoded in the mentioned generated failing test) required
to expose the difference in their behavior.

Performance of Test-Case Generation Tools. In our experiments, we
set up xTestCluster to use two test-case generation tools, EvoSuite [18]
and Randoop [17]. We carry out an additional experiment that executes
xTestCluster using only one test-case generation tool at a time (either
EvoSuite or Randoop). The goal of this experiment is to measure the abil-
ity of each tool to detect behavioral differences between correct and incorrect
patches. In particular, we measure the number of bugs for which xTest-
Cluster generates only pure clusters. As we show in Section 5.3, using both
test-case generation tools, xTestCluster generates pure clusters only for 15
bugs. Whereas, xTestCluster using only Randoop finds pure clusters for
11 bugs, and xTestCluster using only EvoSuite finds pure clusters for 12
bugs. This means that there are patches for three bugs which xTestCluster
with EvoSuite is able to detect behavioral differences for, but with Randoop
alone it is not able to do so. Conversely, xTestCluster with Randoop de-
tects differences between patches for three bugs, which are not detectable using
only EvoSuite. These results are aligned with those presented by Shamshiri
et al. [45] on measuring the ability of generated test cases to detect real-
world bugs, i.e., some bugs are only detected by test cases generated by a
single tool (either EvoSuite or Randoop). To conclude, for xTestClus-
ter, EvoSuite and Randoop are complementary, and the use of both tools
helps xTestCluster increase its performance.
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Runtime overhead of xTestCluster. We configure test generation
tools with a timeout of one minute. The execution of the generated test cases
takes a few seconds on average. Consequently, the overhead mostly depends
on the number of generated patches that xTestCluster aims to cluster.

Integration with existing APR. xTestCluster can be easily inte-
grated with any repair tool that generates Java patches, as it only requires the
programs to be repaired and the generated patches as input. In this paper,
our tool was used with patches generated by 25 repair tools.

7 Threats to Validity

Next, we discuss potential issues regarding the implementation of xTest-
Cluster (internal validity), the design of our study (construct validity), and
the generalisability of our findings (external validity).

Internal Validity. The source code of xTestCluster and the scripts
written for generating and processing the results of our experiments may con-
tain bugs. This issue could have introduced a bias to our results, by removing
or augmenting values. To mitigate this issue we made our source code, as well
as the scripts used for the analysis and processing of the results of our study,
publicly available in our repository [19] for external validation.

Construct Validity. There is randomness associated with use of test-
case generation tools such as EvoSuite [18] and Randoop [17], because of
the nature of the algorithms used in such tools. Therefore, the results of our
experiments could vary between different executions. In this experiment, we
execute Randoop and Evosuite once on each patch. Doing more executions
of those tools (using different random seeds) could produce more diverse test
cases that may find further differences between patches and, consequently, help
xTestCluster produce better results.

External Validity. The study combines three datasets, whose labels were
produced in different ways, either by human or automated evaluation, and this
may affect our results. In particular, the labels produced by Kechagia et al. [23]
were found by human assessment (i.e., two validators independently assessed
each patch), while the labels produced by Ye et al. [8] were found by using
automated test cases generated on the human-patched program, taking it as
ground truth. Additionally, Le et al. [46] found that automated testing per-
forms worse than human labeling, whilst others have found human labeling
introduces bias [8]. Thus, since both manual and automated assessment were
used for labels we examined, there may be some quality deficiencies. However,
we argue that the dataset we curated for this study is the largest and most
comprehensive publicly available, having a greater number of test-cases gen-
erated for each bug in comparison with the one curated in previous work [46].
The magnitude of our dataset could mitigate such labeling issues. Further
research should be done using other labeled sets once they become available.

Durieux et al. [21] observed that the Defects4J benchmark might suffer
from overfitting, as it has been used for the evaluation of most apr tools
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available. Thereby it can produce misleading results regarding the capabilities
of apr tools to generate correct patches. However, since Defects4J has been
used for the evaluation of most apr tools, we were able to find labeled data
from multiple different apr tools only for Defects4J. Further research on
the impact of using other bug benchmarks would tackle this threat.

8 Related work

In this section we discuss the most relevant related work and compare and
contrast them to our proposal xTestCluster.

8.1 Patch clustering

Similar to xTestCluster, Cashin et al. [15] present PATCHPART, a clus-
tering approach that clusters patches based on invariants generated from the
existing test cases. Using Daikon [47] to find dynamic invariants and evaluated
on 12 bugs (5 from GenProg and 7 from Arja), PATCHPART reduces human
effort by reducing the number of semantically distinct patches that must be
considered by over 50%. Our approach, in contrast, is based on output of the
execution of newly generated test cases, and is validated on a larger set of
bugs (139 vs 12), tools (25 vs 2). A deeper comparison with PATCHPART is
not possible as the information about the bugs repaired, considered patches,
clusters generated and the tool is not publicly available.

Mechtaev et al [14] provide an approach for clustering patches based on
test equivalence. There are two main differences between their work and ours.
First, the main technical difference is that our clustering approach exploits
additional automatically generated test cases, which are created to generate
inputs that enforce diverse behavior, while Mechtaev et al. use solely the ex-
isting test suite written by developers, thus is unable to detect differences
not exposed by unseen inputs. Secondly, the goal of our approach also differs:
to group patches generated by different (and diverse) repair tools after those
are generated, while Mechtaev et al. group patches from a single repair tool
as they incorporate their approach to the patch generation process from one
tool. For that reason, our evaluation considers patches from 25 repair tools for
Java, while Mechtaev et al. evaluated four repair tools for C.

8.2 Patch assessment

Wang et al. [43] provide an overview and an empirical comparison of patch
assessment approaches. One of the core findings of Wang et al. [43] is that
existing techniques are highly complementary to each other. These overfitting
techniques can be used to complement our work. For instance, we can apply
xTestCluster, which is based on the cross-execution of newly generated test
cases, on a set of previously filtered patches using automated patch assessment,
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or to use a patch ranking technique on the clusters created by xTestCluster.
We describe a selection of such approaches in this section. Here we divide work
on automated patch assessment into two categories: approaches that focus on
overfitting as: (1) independent tools, which can be used with different apr
approaches; (2) dependent tools, which are incorporated into specific repair
tools.

Independent Approaches. Opad is a dynamic approach, which filters
out overfitted patches by generating new test cases using fuzzing. Initially,
Opad was developed for C programs and evaluated on GenProg, Kali, and
SPR [48]. Recently, a Java version for Opad has been introduced by Wang
et al. [43]. There are several tools that use patch similarity for patch overfit-
ting assessment. For instance, Patch-sim [12] and Test-sim [12] have been
developed for Java and evaluated on jGenProg, Nopol, jKali, ACS and
HDRepair. Specifically, the approach generates new test inputs to enhance
original test suites, and uses test execution trace and output similarity to de-
termine patch correctness. ObjSim [49] employs a similar strategy and has
been evaluated on patches generated by PraPR. The above approaches in-
volve code instrumentation, which can be costly. Like many other approaches,
they also provide patch ranking as an output. DiffTGen [13] identifies over-
fitted patches by generating new test inputs that uncover semantic differences
between an original faulty program and a patched program. Their test cases
are created from a oracle, and in the evaluation of DiffTGen, the authors use
the human-written patches as correctness oracle. Unlike them, in our work we
do not assume existence of an oracle because it is not available during the re-
pair process. Our approach creates new test cases from generated patches (not
from human-written patches) and analyze the behavioural differences between
them (not between a candidate patch and a human-written patch). The goals
of our technique xTestCluster and the mentioned techniques are different.
Those aim to classify patches as overfitting (in order to remove them), our
technique clusters patches according to their behavior. Consequently, even if
both aim to reduce human effort, the final goals are different.

Other patch assessment approaches that use machine learning (ML) to la-
bel correct and incorrect patches have recently emerged. For instance, ODS
is a novel patch overfitting assessment system for Java that leverages static
analysis to compare a patched program and a buggy program, and a proba-
bilistic model to classify patches as correct or not [11]. ODS can be employed
as a post-processing procedure to classify the patches generated by different
apr systems. Tian et al. [44] demonstrated the potential of embeddings to
empower learning algorithms in reasoning about patch correctness: a machine
learning predictor with the BERT transformer-based embeddings associated
with logistic regression. Tian et al. also propose BATS [50], an unsupervised
learning-based approach to predict patch correctness by statically checking the
similarity of generated patches against past correct patches. In addition to the
patch similarity, BATS also considers the similarity between the failing test
cases that expose the bugs fixed by generated patches and those failing test
cases that expose the bugs repaired by past correct patches. Kang et al. [51]
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propose an approach based on language models which prioritizes patches that
generate natural code. The main differences between these machine learning
approaches and xTestCluster, are as follows: (1) we aim to cluster patches
based on behavioural differences, while the aforementioned approaches try to
detect overfitting patches (2) the ML-based approaches are static (do not exe-
cute the patches), while our approach performs dynamic analysis by executing
the generated patches using newly generated test cases (3) we do not require
existence of a dataset of previously fixed patches.

Dependent Approaches. This category includes apr tools that also
implement patch overfitting assessment techniques. Most techniques are based
on static analysis and relevant heuristics. For instance, S3 is an apr tool for
the C programming language that uses syntax constraints for assessing patch
overfitting [52]. ssFix is an apr tool for Java that leverages syntax constraints
for assessing patch overfitting [53]. CapGen considers programs’ asts and a
context-aware approach for assessing patch overfitting [54]. Prophet is an
apr tool for C programs that rank patch candidates in the order of likely
correctness using a model trained from human-written patches. Other tech-
niques apply dynamic strategies for filtering overfitting patches. For instance,
Fix2Fit [55] is an apr tool for C programs that defines a fuzzing strategy that
filters out patches that make the program crash under newly generated tests.
Our approach can complement these tools: xTestCluster can receive as

input the (filtered) patches from one or more of those apr tools, and present
to the user only those that behave differently.

9 Conclusions

We have introduced xTestCluster that is able to reduce the amount of
patches required to be reviewed. xTestCluster clusters semantically simi-
lar patches together by exclusively utilising automated test generation tools.
In this paper, we evaluate it in the context of automated program repair.
APR tools can generate multiple plausible patches, that are not necessarily
correct. Moreover, different tools can fix different bugs. Therefore, we consider
a scenario where multiple tools are used to generate plausible patches for later
patch assessment.

We gathered 1910 patches from previous work that were labeled as correct
or not and evaluated xTestCluster using that set. We show that xTest-
Cluster can indeed cluster syntactically different yet semantically similar
patches together. Results show that xTestCluster reduces the median num-
ber of patches that need to be assessed per bug by half. This can save significant
amount of time for developers that have to review the multitude of patches
generated by apr techniques. Moreover, we provide test cases that show the
differences in behavior between different patches.

For 38% of bugs considered all the clusters are pure, i.e., contain only
correct or incorrect patches. Thus, code reviewer can select any patch from
such a cluster to establish correctes of all patches in that cluster. In the other
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cases we need a selection strategy so that correct patches are selected before
incorrect ones.

We thus assess the feasibility of using xTestCluster with two simple
patch selection strategies (i.e., length-based and random), which provides a
baseline for future investigation with other patch selection strategies. These
can be existing patch overfitting techniques that provide patch ranking. In this
way our approach is complementary to existing work on patch overfitting.
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