
MEG: Multi-objective Ensemble Generation for Software Defect
Prediction

Rebecca Moussa, Giovani Guizzo, Federica Sarro
Department of Computer Science, University College London (UCL)

United Kingdom
{rebecca.moussa.18,g.guizzo,f.sarro}@ucl.ac.uk

ABSTRACT

Background:Defect Prediction research aims at assisting software
engineers in the early identification of software defect during the
development process. A variety of automated approaches, rang-
ing from traditional classification models to more sophisticated
learning approaches, have been explored to this end. Among these,
recent studies have proposed the use of ensemble prediction models
(i.e., aggregation of multiple base classifiers) to build more robust
defect prediction models.Aims: In this paper, we introduce a novel
approach based on multi-objective evolutionary search to automat-
ically generate defect prediction ensembles. Our proposal is not
only novel with respect to the more general area of evolutionary
generation of ensembles, but it also advances the state-of-the-art
in the use of ensemble in defect prediction. Method: We assess
the effectiveness of our approach, dubbed as Multi-objective
Ensemble Generation (MEG), by empirically benchmarking it
with respect to the most related proposals we found in the literature
on defect prediction ensembles and on multi-objective evolutionary
ensembles (which, to the best of our knowledge, had never been
previously applied to tackle defect prediction). Result: Our results
show that MEG is able to generate ensembles which produce similar
or more accurate predictions than those achieved by all the other
approaches considered in 73% of the cases (with favourable large
effect sizes in 80% of them). Conclusions: MEG is not only able
to generate ensembles that yield more accurate defect predictions
with respect to the benchmarks considered, but it also does it auto-
matically, thus relieving the engineers from the burden of manual
design and experimentation.

CCS CONCEPTS

• Software and its engineering → Search-based software en-

gineering; Software defect analysis; • Computing method-

ologies → Ensemble methods.

KEYWORDS

Defect Prediction, Search-Based Software Engineering,Multi-Objective
Optimisation, Hyper-Heuristic, Empirical Study

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM’22, September 19–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546255

ACM Reference Format:

RebeccaMoussa, Giovani Guizzo, Federica Sarro. 2022.MEG:Multi-objective
Ensemble Generation for Software Defect Prediction. In Proceedings of the
16th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement.. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3544902.3546255

1 INTRODUCTION

As the world becomes more and more dependent on software, tasks
such as detecting defects early in the development process become
more essential and critical. Fixing software defects costs billions
per year. The later a bug is found in the process, the more it costs
to both its users, and the company providing the software [35].

Defect Prediction (DP) aims at assisting software engineers in
the early identification of software defects during the development
process, and ideally, before it is shipped to its customers. A variety
of automated approaches, ranging from traditional classification
models to more sophisticated learning approaches, have been ex-
plored to this end. Among these, recent studies have found the use
of ensemble prediction models (i.e., aggregation of multiple base
classifiers) to achieve more accurate results than those that would
have been obtained by relying on a single classifier.

However, designing an ensemble requires a non-trivial amount
of effort and expertise with respect to the choice of the set of base
classifiers, their hyper-parameter tuning, and the choice of the
strategy used to aggregate the predictions. An inappropriate choice
of any of these aspects can lead to over- or under-fitting, thereby
heavily worsening the performance of the ensemble.

Examining all possible combinations is not computationally af-
fordable, as the search space is too large, and there is a strong
interaction among these aspects, which cannot be optimized sep-
arately. Such a large search space makes Search-Based Software
Engineering a suitable solution for the problem of automatically
generating effective ensembles for DP.

In this paper, we propose a novel use of multi-objective evolution-
ary algorithms to automatically generate defect prediction ensem-
bles. We dub our proposed approachMulti-objective Ensemble
Generation (MEG).

MEG is novel with respect to the existing proposals in the more
general area of evolutionary generation of ensembles, which are
all based on Pareto-ensemble generation as opposed to the concept
ofWhole-ensemble generation we introduce herein. Moreover, our
study is the first to investigate the effectiveness of evolutionary
ensemble for defect prediction.

In order to assess the effectiveness of MEG, we conduct a large-
scale empirical study by benchmarking it against traditional base
classifiers (as a sanity check), against the state-of-the-art multi-
objective ensemble approach proposed by Petrić et al. [53] which,

https://doi.org/10.1145/3544902.3546255
https://doi.org/10.1145/3544902.3546255
https://doi.org/10.1145/3544902.3546255

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

to the best of our knowledge, is the only one to use a diversity
measure in the ensemble Defect Prediction literature, and against
DIVACE proposed by Chandra et al., which is considered a seminal
work for ensemble generation in the Evolutionary Computation
literature. These [53] [17] are the work most closely related to ours,
which motivated us to compare MEG to them.

To assess the effectiveness of MEG we carried out a thorough
large-scale empirical study involving a total of 24 real-world soft-
ware versions and 16 cross-version defect prediction scenarios,
assessed according to the latest best practice for the evaluation of
defect prediction and search-based approaches [7, 51, 55, 64].

Our results show that MEG is able to generate ensembles with
similar or more accurate predictions than those achieved by all the
other approaches considered in 73% of the cases (with large effect
sizes in 80% of them). Not only does MEG yield good results, but it
also relieves the engineer from the error-prone, burdensome, and
time-consuming task of manually designing and experimenting
with different ensemble configurations in order to find an optimal
one for the problem at hand.

Themain contributions of our work are: (1) The proposal of MEG,
a novel multi-objective approach for the automated generation of
ensembles based on the concept of whole-ensemble generation. (2)
A large-scale empirical evaluation of the effectiveness of MEG for
defect prediction which involves eight open-source Java software
systems for a total of 24 software versions and 16 cross-version
defect prediction scenarios. (3) The comparison of MEG to baseline
defect prediction classifiers, the more recent approach to build
ensembles for defect prediction [53], and a state-of-the-art multi-
objective Pareto-ensemble generation (which has never applied to
defect prediction before) [17].

We make the source code of MEG publicly available to facilitate
its uptake for both researchers and practitioners [49]. We also share
a replication package to allow for reproduction and extension [49].

2 BACKGROUND

Given the multi-disciplinary nature of this work, this section pro-
vides some background on Defect Prediction, Ensemble Learning,
and Multi-Objective Evolutionary Optimisation.

2.1 Defect Prediction

Models applied for defect prediction generally exploit past data
about software modules in order to classify the latter as either
defective or not. To this end, predictive models infer one aspect
of the data (dependent variable) from some combination of other
aspects of the data (independent variables). In the context of binary
defect prediction, the dependent variable is denoted by whether the
software module contains defects or not, whereas the independent
variables may vary depending on the project and can be extracted
from various aspects of the software (e.g., source code metrics, pro-
cess metrics) [10, 21, 47, 54, 75]. The performance of a predictive
model relies on both the modelling technique and the independent
variables used. A great deal of predictive models have been investi-
gated in the literature. This includes widely used Machine Learning
techniques such as Decision Trees, Logistic Regression and Naive
Bayes [16, 27, 36]. More advanced techniques such as ensemble
learning and search-based approaches have also been successfully

applied for predicting software defects [3, 15, 20, 29, 43, 48, 57, 61].
However, no previous study has investigated the application of
search-based approaches for the generation of ensemble for defect
prediction.

2.2 Ensemble Learning

Ensemble Learning is a technique used for building more robust ma-
chine learning models achieving better performance by the means
of combining multiple classifiers trained to solve the same problem.

Base models can be used to design more complex models by
combining a number of them according to a given ensemble learning
approach. The aim is to achieve a more robust model able to reduce
both (1) the bias error, which arises from erroneous assumptions
made by a single base learner and which usually causes underfitting
(i.e., missing relevant relations between features and target outputs);
(2) the variance, which arises from the base learner sensitivity to
small fluctuations in the training set and causes overfitting (i.e., the
algorithm models the noise present in the training data).

Ensemble approaches can be classified into two types, homoge-
neous ensembles and heterogeneous onss. Homogeneous ensembles
consist of members having a single-type base learning algorithm,
whereas heterogeneous ensembles consist of members having dif-
ferent base learning algorithms. The choice of base learners and
their combination to build an ensemble is extremely important for
building a successful model. To this end, several algorithms have
been proposed in the literature [57]. These include both, simple
aggregation strategies, such as majority voting, weighted major-
ity voting, average voting, and more advanced ones like bagging,
boosting, and stacking.
Majority Voting is a simple aggregation strategy that considers the
prediction of each base classifier, for a new instance, as a single
vote. It then assigns the class which obtains the largest number of
votes to the new instance.
Weighted Majority Voting is an extension to Majority Voting strat-
egy, except that it gives more weight to the best base classifier by
counting its prediction twice. It then follows the same strategy as
Majority Voting as it assigns, to the new instance, the class which
obtains the largest number of votes.
Average Voting assigns to the new instance an averaged value of
the predictions of all base classifiers.

In binary classification problems, such as defect prediction, where
the output is either “defective” or “non-defective”, this strategy com-
putes the average of the prediction probabilities yielded by each
base classifier. If the final averaged probability is lower than 0.5,
the instance is classified as non-defective, otherwise it is assigned
to the defective class.
Stacking is an ensemble machine learning algorithm which uses a
meta-classifier to learn how to best combine the predictions from
two or more base machine learning algorithms. Stacking can har-
ness the power of a range of well-performing models on a classi-
fication or regression task and can make predictions that achieve
better performance than any single model in the ensemble.
Bagging and Boosting are considered homogeneous learners, while
Stacking considers heterogeneous base learners. Besides, Bagging
mainly focuses on producing an ensemble model with less variance

MEG: Multi-objective Ensemble Generation for Software Defect Prediction ESEM’22, September 19–23, 2022, Helsinki, Finland

than its components whereas Boosting and Stacking will mainly
try to produce strong models less biased than their components.

2.3 Multi-Objective Evolutionary Optimisation

Evolutionary Algorithms (EAs) are evolution-based optimisation al-
gorithms used to find approximation solutions in a feasible amount
of time to otherwise hard search problems [32, 37]. EAs work by
iteratively evolving a population of chromosomes (solutions), each
of which containing a set of genes. These solutions are encoded
in a pre-defined structure, also known as the representation, e.g.,
an array of bits, integers, or floating points. The quality of a solu-
tion is assessed by a fitness function, which measures the extent
to which a solution is fit to solve the problem. At each generation,
the solutions of the population (parents) undergo crossover and
random mutations in order to generate new candidate solutions
(offspring). These operations carry genetic information from the
fittest parents to the offspring and introduce diversity into the
population, respectively. At the end of the generation, the fittest
solutions survive and become parents in the subsequent generation.
When a given stopping condition is reached, the fittest solution is
returned. However, in most real-world scenarios (such as in Soft-
ware Engineering), there are many conflicting objectives with equal
weights that should be considered when analysing the quality of
solutions [37, 76, 77]. They are said to be conflicting because they
often cannot be optimised simultaneously in full, i.e., by improving
one objective, the others are likely to deteriorate. Therefore, Multi-
Objective Evolutionary Algorithms (MOEAs) try to find a balance
between the many objectives and eventually output a set of non-
dominated solutions using the concept of Pareto dominance [37, 76]
as explained below. Let Z be a set of minimisation objectives and x
andy two different solutions. Solution x is said to dominate solution
y (x ≻ y) if: ∀z ∈ Z : z(x) ≤ z(y)and∃z ∈ Z : z(x) < z(y)

If these conditions do not hold, then x and y are said to be
non-dominated, i.e., they represent equally feasible solutions with
acceptable trade-offs for the problem at hand.

3 MEG: MULTI-OBJECTIVE ENSEMBLE

GENERATION

Figure 1 depicts an overview of MEG. The main purpose of MEG
is to automatically generate ensemble classifiers by choosing a set
of base classifiers, tuning them, and then selecting an aggregation
strategy to produce the final ensemble. MEG is based on MOEAs,
thus it iteratively evolves a population of ensembles across multi-
ple generations and outputs the ensembles with the best trade-off
between diversity of base classifiers and overall accuracy of predic-
tions (Section 3.2 describes the objectives).

MEG differs from related work [17, 23, 25, 28, 59] in many ways.
While algorithms like DIVACE [17] work as a Pareto-ensemble
technique (evolve base classifiers and aggregate the non-dominated
ones), MEG takes a more direct and intuitive approach where each
solution in the population is a whole ensemble. Other work use
a more similar representation as the one adopted by MEG [23, 25,
28, 59]. However, such approaches focus on selecting a set of pre-
defined base classifiers, as opposed to designing, configuring, and
building ensembles and the constituent parts.

MEG differs from related work by selecting base classifiers, op-
timising their hyper-parameters, and finally picking an ensemble
strategy that best suits the context. The result is not a single ensem-
ble, but rather a set of evolved ensembles from which the engineer
can choose the one that best fits their needs. This allows for a ro-
bust evolution of ensembles with more flexibility in how they are
designed and built. We define our proposed technique, MEG, as
whole ensemble generation, which is not only novel for the defect
prediction literature, but also for the general ensemble literature.

3.1 Representation

The representation of MEG consists of three arrays: i) Classifiers –
binary array; ii) Parameters – double/floating points array; and iii)
Ensemble/Aggregation Strategy – integer array.

The classifier array contains 15 bits, where each index corre-
sponds to a specific classifier. If the bit in index i is 1, it signifies
that the i-th classifier is active and will be included in the ensemble,
otherwise, it will not be included. MEG explores three different
types of classifiers. These are namely, Naive Bayes (NB) at indexes
1..3, three k-Nearest Neighbors algorithms (k-NN) at indexes 4..6,
four Support Vector Machines (SVM) at indexes 7..10, and five Deci-
sion Trees (DT) at indexes 11..15. We included those models in the
representation because the most related work [53] to ours used the
same. This allows a fair comparison in our empirical study, however
future work can extend MEG to incorporate other classifiers.

The parameter array consists of the hyper-parameters of each
of the 15 classifiers.

For k-NN, SVM, and DT, the parameters are represented by dou-
ble values indicating the number of neighbours, cache size, and
pruning confidence, respectively. For NB, we use a categorical value
where 0 indicates the normal density distribution and 1 represents
a kernel density estimator. MEG can be extended to handle addi-
tional hyper-parameters for each classifier, however in this work
we experimented with the ones used in the work of Petrić et al. [53].

Finally, the strategy array consists of a single integer value (later
converted into a categorical one) representing the strategy to be
used by the ensemble to aggregate the predictions of all constituent
classifiers. Given that we aim at investigating ensembles composed
by different types of base classifiers, we consider the following het-
erogeneous aggregation strategies: i) majority voting; ii) weighted
majority voting; iii) stacking; and iv) average voting.1

The proposed representation allows MEG to simultaneously
select classifiers, optimise their parameters, and select the aggre-
gation strategy. For instance, differently from algorithms such as
DIVACE [17], the strategy array allows MEG to optimise for a spe-
cific ensemble strategy, as opposed to forcing the engineer to choose
one. Furthermore, allowing the selection of classifiers and their tun-
ing online also reduces the engineering effort, as the engineer is not
required to pre-train the classifiers before the optimisation process,
such as in the work of Fletcher et al. [23].

3.2 Fitness Functions

MEG uses two fitness functions to guide the search for ensembles:
diversity and accuracy. The accuracy of an ensemble depicts how

1We do not consider Bagging and Boosting as they are both homogeneous ensemble
strategies which take into account a single type of base classifier.

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

Figure 1: An overview of our proposed Multi-objective Ensemble Generation (MEG) approach.

well it can predict the labels of the instances under consideration,
which in the context of this work are “defective” (true) or “non-
defective” (false). Naturally, the more accurate the ensemble, the
better. On the other hand, the diversity measures assess how differ-
ent the predictions of the classifiers in the ensemble are. Diversity
is an important factor when designing ensembles, since a diverse
ensemble is more likely to predict “corner cases” instances. How-
ever, in a classification problem, the more the classifiers disagree
in their predictions, the less accurate the ensemble tends to be. For
instance, for a given instance with the true label “defective”, if two
classifiers each predict “defective” and “non-defective” respectively,
then we obtain diverse results, but with 50% accuracy. Hence, these
two measures are conflicting, but MEG still aims at optimising both
for a good trade-off.

There are many accuracy and diversity measures in the litera-
ture [57]. In this work, we use Mathews Correlation Coefficient
(MCC) [63] as the accuracy objective, and Disagreement [38] as
the diversity measure. MCC represents the correlation coefficient
between the actual and predicted classifications. Equation 1 shows
the formula for the assessment of MCC.

↑ Accuracy = MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(1)
where True Positives (TP) are defective modules correctly classified
as defective; False Positives (FP) are non-defective modules falsely
classified as defective; False Negatives (FN) are defective modules
falsely classified as non-defective; True Negatives (TN) are non-
defective modules correctly classified as non-defective (see Table 1).

MCC outputs a value between −1 and +1, where a value of
+1 indicates a perfect prediction, a value of 0 signifies that the
prediction is no better than random guessing, and −1 represents a
completely miss-classified output. With that in mind, the greater
theMCC, the better the solution.We opted to useMCC to assess and

Table 1: Confusion Matrix for Binary Classification.

Actual Value Predicted Value

Defective (1) Non-Defective (0)
Defective (1) TP FN
Non-Defective (0) FP TN

compare the accuracy of models as this measure has been strongly
recommend in alternative to other previously popular measures,
such as F-measure, which have been shown to be biased [51, 63, 73]
when the data is imbalanced (as it is frequently the case in DP).
MCC is a more balanced measure which, unlike the other measures,
takes into account all the values of the confusion matrix [51, 63].

The second objective, diversity, is computed based on the dis-
agreement measure [38], which measures (as the name implies) the
prediction disagreement between groups of classifiers. We use this
measure as it was used in previous work for traditional ensemble
defect prediction [53] to which we compare MEG.

Equation 2 depicts the formula for computing Disagreement:

↑ Diversity = DISi, j =
N 10 + N 01

N 11 + N 00 + N 10 + N 01 (2)

where N 10 represents the number of instances correctly classified
by the ith classifier and incorrectly by the jth classifier of the en-
semble. N 01, N 00 and N 11 can be interpreted similarly. In summary,
disagreement measures how many of the base classifiers’ predic-
tions contradict each other. Disagreement values can be any value
within the range [0, 1], where the higher the value, the more differ-
ent the two classifiers. To calculate the diversity of the ensemble,
we find the average pairwise disagreement between all pairs of its
constituent members. An ideal ensemble would be the one that
yields a high MCC and a high disagreement between its constituent
classifiers. However, as mentioned at the beginning of this section,
this is hard to achieve in practice, thus the need of using a MOEA
to strike an optimal trade-off between these two competing goals.

3.3 Genetic Operators

Since there are three arrays in the representation (Section 3.1), the
crossover and mutation happen in three parts, each of which with
the respective operators adapted for the type of genes.

MEG uses a Single Point Crossover operator with 95% probability
for all three representation arrays. This crossover operator takes
two parents and combines their genes to generate two children.
First, it chooses an index from the parents’ genes array at random.
It cuts the parents on that index into two parts, left and right. It
then combines the left part of parent one with the right part of
parent two to generate the first child, and the right genes of parent
one with the left genes of parent two to create the second child.

MEG: Multi-objective Ensemble Generation for Software Defect Prediction ESEM’22, September 19–23, 2022, Helsinki, Finland

After crossover, the children undergo mutation with a lower
probability. Since the classifiers array (bit array) and parameters
array (double array) have 15 indexes, the mutation probability is
set to 0.07. Thus, it is expected that each child will have one of its
bit/double gene mutated. For the ensemble strategy (int array) with
one index, the probability is set to 0.25. Hence, it is expected that
the ensemble aggregation strategy is mutated once in every four
children. MEG uses a Bit Flip Mutation operator for the classifier
array, and a Simple Random Mutation operator for the parameter
and strategy arrays. The former simply flips the bit by changing it
to 1 if the gene is 0, or to 0 if the gene is 1. The latter generates a
random number for a mutated gene.

We set the population size to 100 and the stopping condition to
10,000 fitness evaluations. This means that the evolutionary process
runs for 100 generations. In the end, all the non-dominated solutions
are returned. In our experiments, the same algorithm, operators,
and configuration are used with DIVACE (Sections 4 and 5).

3.4 Implementation Aspects

MEG was implemented using jMetal 5.10,2 a widely-used frame-
work for realising MOEAs in Java. jMetal provides multiple MOEAs,
and mutation and crossover operators, which suits well the purpose
of MEG. We implement MEG by using the NSGA-II [19] algorithm.
We chose NSGA-II due to its popularity, easily adaptable nature
with jMetal, performance, and because it has shown to be a robust al-
gorithm in the SBSE literature [31]. For the ML implementation, we
use the Weka 3.9 framework.3 Our source-code is publicly available
online, along with a replication package, containing the datasets,
the raw results and the scripts we realised to analyse them [49].

4 EXPERIMENTAL DESIGN

In order to validate the effectiveness of MEG, we benchmark it
against base classifiers, the state-of-the-art ensemble stacking for
defect prediction as proposed by Petrić et al. [53], and the state-of-
the-art Pareto-ensemble generation approach DIVACE [17], in the
context of Cross-Version Defect Prediction (CVDP). Specifically, we
aim at answering three research questions (RQs) as detailed below.

4.1 Research Questions

ML base classifiers have been widely proposed and considered as
benchmarks in previous defect prediction studies. Therefore, our
first research question investigates and compares the performance
of MEG with that of traditional ML base classifiers. We consider
this a “sanity check” given that any newly proposed model that
cannot generally outperform base classifiers cannot be considered
a scientific advancement in the state-of-the-art. To this end we ask:

RQ1 – MEG Vs. Base Classifiers: How does MEG compare to
traditional base classifiers?

If MEG passes this sanity check, then we investigate whether our
proposed approach can also outperform the aggregation of multiple
ML base classifiers. We therefore compare the performance of MEG
with that of existing ensemble for defect prediction. In order to
verify this, we pose our second research question:

2https://github.com/jMetal/jMetal
3https://www.cs.waikato.ac.nz/ml/weka/

RQ2 – MEG Vs. Traditional Ensemble: How does MEG com-
pare to ensemble stacking?

In particular, as nobody has previously proposed the use of
MOEAs to generate ensemble models for defect prediction, we
answer the above question by verifying whether MEG actually
performs better than stacking, which has proven to be better than
other ensemble approaches in previous defect prediction work [53].

Since our approach, MEG, is also novel with respect to exist-
ing multi-objective evolutionary approaches designed to gener-
ate ensemble for general-purpose classification problems, we also
benchmark it with the state-of-the-art Pareto-ensemble generation
technique DIVACE, thereby motivating our last research question:

RQ3 – MEG Vs. Pareto-ensemble: How does MEG compare
to Pareto-ensemble generation, more specifically DIVACE, the state-
of-the-art ensemble generation technique based on MOEAs?

In the following subsections we describe the techniques and
datasets used as a benchmark to answer RQs 1–3, and the validation
and evaluation criteria we employed to assess the performance of
the prediction models we compare.

4.2 Benchmark Techniques

4.2.1 Base Classifiers. As a baseline benchmark, we compare the
ensemble produced by MEG to the single based learners, as the
purpose to build an ensemble is to achieve prediction performance
which are at at least comparable or superior to individual classi-
fiers [9, 13, 53]. We use the same four base classifiers used by Petrić
et al. [53]., namely Naïve Bayes (NB)[70], k-Nearest Neighbour
(k-NN), Support Vector Machine (SVM) [14], and Decision Tree
(DT) [58]. To allow for a fair comparison with the ensembles, these
are the same classifiers used by both MEG and DIVACE.

Based on the study by Petrić et al. [53], we train the base clas-
sifiers with the following parameters and select the configuration
with the best training/validation MCC, as explained in Section 4.4:
i) NB – NB with conventional distribution estimation and NB-K
with kernel density estimator; ii) DT – pruning confidence values
of 0.25, 0.2, 0.15, 0.1, and 0.05; iii) k-NN – number of neighbours (k)
of 3, 5, and 7; and iv) SVM – C of 1, 10, 25, and 50.

4.2.2 Stacking Ensemble. The Stacking ensemble proposed by Petrić
et al. [53] is composed by at most 15 base classifiers, each of which
has a pre-defined configuration. The best stacking composition is
the best combination of 2 to 15 base classifiers with the best train-
ing/validation MCC value. Moreover, since the other algorithms
and MEG also use MCC, this was the natural choice for a fair com-
parison. To find the best Stacking combination, we followed the
procedure proposed by Petrić et al. [53]. We first train the 15 base
classifiers and order them in descending order according to their
MCC. We then build 14 combinations from sizes 2 to 15, incre-
mentally adding the next best base classifier, and setting the best
classifier as the meta-classifier. We then select the best combination
for a given program obtained on the train/validation set and use it
during the testing phase, as detailed in Section 4.

4.2.3 Pareto-ensemble Generation: DIVACE. DIVACE is a Multi-
objective Genetic Algorithm that uses the Pareto-ensemble ap-
proach to search for optimal ensemble classifiers, i.e., it joins the

https://github.com/jMetal/jMetal
https://www.cs.waikato.ac.nz/ml/weka/

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

resulting non-dominated predictors into one single ensemble. DI-
VACE had never been assessed for defect predition in prior studies.
It was originally proposed for a regression task (more specifically
for building neural networks), but it has served as a reference since
then for other ensemble generation techniques. It makes use of
specialised continuous operators to generate weights and drive
solutions towards specific and relevant parts of the search space.
For more details on the approach we refer the reader to the original
paper by Chandra et al. [17].

DIVACE, as originally proposed, uses the Negative Correlation
Learning (NCL) measure for diversity, and MCC for the accuracy
objective. DIVACE evolves the same four base classifiers as MEG by
using NSGA-II, to allow for a fair comparison. Since DIVACE does
not automatically select the aggregation strategy during the evo-
lutionary process, one has to manually experiment with different
aggregation strategies to identify the most suitable for the problem
at hand. We therefore tried different strategies (i.e., Majority Vot-
ing, Stacking, and Average Rule) and found that Majority Voting
generally generates the best results for the investigated datasets.

At the end of the evolution process, DIVACE aggregates all non-
dominated solutions based on NCL and MCC into a single Majority
Voting ensemble, thus producing a single optimal solution.

4.3 Datasets

In our empirical study we used the corpus made publicly available
by Yatish et al. [74]. This data has been collected using a realistic
approach based on twomain criteria: (i) the use of an Issue Tracking
Systemwith the availability of high numbers of closed or fixed issue
reports; and (ii) issue reports collected for each studied system are
traceable back to the code. Following this procedure has resulted
in obtaining less erroneous defect counts and hence representing a
more realistic scenario of defective module collection.

We experiment with eight software systems considering three
releases for each system, as listed in Table 2, which has been shown
to be preferable to other types of validation such as 10-fold cross
validation or bootstrapping [22, 29].

4.4 Validation Criteria

In the CVDP scenario, for each of the software systems, we train on
one release and test on a later version, i.e., we train on version vx
and test on version vy , where x < y, as done in previous work [29].

Training and Validation: For all algorithms included in this
study, to prevent overfitting during the training phase, we apply
an internal bootstrapping procedure with replacement using 80%
of the data for training and 20% for validation (as suggested by
Tantithamthavorn et al. [66]). We use this bootstrapping procedure
to cater for the randomness of the data as confounding factors for
the results. During the MOEA evolution, each candidate solution’s
fitness is the result of the predictions over the unseen 20% validation.
We perform the same procedure to train the Stacking (state-of-the-
art ensemble), DIVACE, and all traditional classifiers.

For each of the approaches investigated herein, the best perform-
ing solutions, are selected based on MCC on the validation data,
and then used to train the final model on the whole training data.
Such a model is then evaluated on an unseen test set. Given that
MEG generates a set of ensembles (rather than a single solution as

Table 2: Total number of modules and percentage of faulty

components for each of the datasets used in our empirical

study.We used the two lowest version numbers (one at time)

for training the prediction models and the highest one for

testing them.

Dataset

No. of modules

(faulty %)

Dataset

No. of modules

(faulty %)

activemq-5.0.0 1884 (15.55%) hive-0.9.0 1560 (11.28%)
activemq-5.3.0 2367 (10.90%) hive-0.10.0 1560 (11.28%)
activemq-5.8.0 3420 (6.02%) hive-0.12.0 2662 (8.00 %)
derby-10.2.1.6 1963 (33.67%) jruby-1.1.0 731 (11.9%)
derby-10.3.1.4 2206 (30.33%) jruby-1.5.0 1131 (7.25%)
derby-10.5.1.1 2705 (14.16%) jruby-1.7.0 1614 (5.39%)
groovy-1.5.7 757 (3.43%) lucene-2.3 805 (24.35%)
groovy-1.6-B1 821 (8.53%) lucene-3.0 1337 (11.59%)
groovy-1.6-B2 884 (8.60%) lucene-3.1 2806 (3.81%)
hbase-0.94.0 1059 (20.59%) wicket-1.3.0-B1 1763 (7.37%)
hbase-0.95.0 1669 (22.95%) wicket-1.3.0-B2 1763 (7.37%)
hbase-0.95.2 1834 (26.34%) wicket-1.5.3 2578 (4.07%)

done by the base classifiers and DIVACE), we choose the solution in
the Pareto-front with the highest MCC value on the validation data
as the MEG’s final solution. After a preliminary but comprehensive
assessment, such a heuristic also showed to be the best one among
other investigated ones such as selecting the most diverse solution,
the one in between, or a random solution. We provide a summary
of this preliminary assessment in our online artefact.

Testing: For each of the systems and prediction techniques con-
sidered herein, we build two prediction models. One by using the
first available version in Yatish’s corpus [74] as training data, given
that recent work has proven that it is effective to use early defect
data for training purposes [8, 65], and one by using the penultimate
available version, as done in most of previous CVDP work. Both
models are then tested on the latest version available in the corpus,
which is completely unseen/untouched during the training process.
By following this procedure, we ensure that the training and choice
of best solution in the previous phases reflects a real-world scenario
where the engineer does not possess information about the software
components for which they are trying to predict defects. Moreover,
the versions we used as train and test sets are not immediately
subsequent releases nor are they the system’s most recent ones. In
addition, there is always a window of at least five months between
these releases. This reduces the likelihood of the snoring effect or
unrealistic labelling as described in previous studies [4, 8, 34].

Finally, to mitigate for the variability induced by the use of
stochastic algorithms, we run the above procedure 30 times [7, 55].

In order to ensure a fair comparison among all algorithms, we
ensured that the bootstrapping procedure samples the same data to
train each compared approach within a same run by using a same
seed for all, yet different runs uses different seeds.

4.5 Evaluation Criteria

We use MCC to evaluate the prediction performance of the models
given that we do not target a specific business context [45, 51],
and, as explained in Section 3.2, MCC is a comprehensive measure,
which provides a full picture of the confusionmatrix by assessing all
its aspects equally. It is also not sensitive to highly imbalanced data

MEG: Multi-objective Ensemble Generation for Software Defect Prediction ESEM’22, September 19–23, 2022, Helsinki, Finland

and is widely used in the defect prediction and machine learning
literature [51, 63, 73].

In order to show whether there is any statistical significance
between the results obtained by the models, we perform the Mann-
Whitney U [42] setting the confidence limit, α , at 0.05 and applying
the Bonferroni correction (α/K , where K is the number of hypothe-
ses) when multiple hypotheses are tested. Unlike parametric tests,
the Mann-Whitney U raises the bar for significance, by making
no assumptions about underlying data distributions. Moreover, we
used effect size to assess whether the statistical significance has
practical significance effect size [7]. To this end we use the Vargha
and Delaney’s Â12 non-parametric effect size measure, as it is rec-
ommended to use a standardised measure rather than a pooled one
like the Cohen’sd when not all samples are normally distributed [7],
as in our case. The Â12 statistic measures the probability that an
algorithm A yields greater values for a given performance measure
M than another algorithm B, based on the following equation:

Â12 = (R1/m − (m + 1)/2)/n (3)

where R1 is the rank sum of the first data group we are comparing,
andm and n are the number of observations in the first and second
data sample, respectively. Values between (0.44, 0.56) represent
negligible differences, values between [0.56, 0.64) and (0.36, 0.44]
represent small differences, values between [0.64, 0.71) and (0.29, 0 :
44] represent medium differences, and values between [0.0, 0.29]
and [0.71, 1.0] represent large differences.

4.6 Threats to Validity

Threats to External Validity: As it is the case for most software
engineering empirical studies, the datasets (i.e., programs) and pre-
diction approaches used in this paper might not be fully represen-
tative of the population, which is a threat to the generalisation of
our conclusions. The datasets we use are all based on open-source
Java projects [74], which limits the generalisability of our results
to proprietary software or projects written in other languages. In
order to mitigate this threat, we used a variety of programs of
different sizes and imbalanced nature, and which have been used
in previous work [74]. Another external threat is linked to the
choice of techniques which MEG was benchmarked against. We
benchmarked MEG against the most relevant related work in the
literature: traditional base ML classifiers, widely used in defect pre-
diction work [27], the only multi-objective ensemble proposed thus
far for defect prediction [53] and the state-of-the-art evolutionary
ensemble DIVACE. Moreover, we implemented both DIVACE and
the Stacker approach with Weka which is the tool used by Petric
et al. [53] to closely reproduce the state-of-the art multi-objective
ensemble DP [53]. This allowed us to share as many aspects as pos-
sible between all approaches and reduce any confounding factors
that could arise from different implementations or configurations
[40, 50]. While we believe that it would be interesting to carry out a
large-scale empirical study comparing other ensemble approaches
which have been proposed in the more general ML literature but
have not been used for defect prediction (including for example
auto-sklearn and AutoFolio [35]), this is out of the scope of our work
and it deserves an investigation on its own right due to both the
different aim, scope and technical challenges involved. For example,
in order to compare various ensembles provided in ML tools other

than Weka, such as auto-sklearn or AutoFolio which are currently
available only in Phyton, it might require one to re-implement all
approaches in a same tool to ensure a fair empirical comparison as
using different ML tools might lead to different results [40, 50].

Threats to Internal Validity: The most prominent threat to inter-
nal validity relates to the correctness of our own implementations
of DIVACE and the Stacking build procedure. We followed all the
details provided in the reference papers [17, 53], but it is still possi-
ble that some differences were introduced. In order to mitigate this
threat, all authors made sure to rule out any ambiguity by verifying
the code and comparing it to the reference papers. In occasions
where we could not agree on the way to resolve an ambiguity,
we opted for design decisions which allow us to compare all the
approaches on a level playing field.

Threats to Construct Validity: DIVACE and MEG are stochastic
by nature. Consequently, the results of these techniques may differ
from one run to another, causing unwanted variations in our experi-
mental analysis. In order to mitigate this variability, and to provide a
robust analysis, both DIVACE and MEG were executed 30 times and
the median MCC values were reported (as opposed to means given
that the latter is known to be more susceptible to outliers [64]),
as suggested by best practices for the assessment of randomised
optimisation algorithms and prediction systems [7, 51, 55, 64]. More-
over, we perform bootstrapping during training by using a same
random seed for all techniques used across all our experiments.
This ensures that any variation or difference in results is due to
the nature of the techniques themselves and not due to a differ-
ent random data sampling. Finally, we used a robust and unbiased
measure, such as MCC, to evaluate the prediction capabilities of
all the approaches investigated herein, and performed statistical
tests, including both hypothesis testing and effect size, by carefully
checking all the required assumption, such that our conclusions
could be backed up by scientifically sound evidence [51].

5 RESULTS

In this section, we present and discuss the results of all research
questions addressed in our work.

5.1 Answer to RQ1 – MEG Vs. Base Classifiers

As a sanity check, we compare the performance of MEG to that
of traditional classifiers (i.e., DT, NB, k-NN and SVM) known to
perform well for the task of defect prediction.

Table 3 shows that, out of the four classifiers investigated, NB
achieves the best performance overall. When compared to MEG,
results show that MEG performs similarly or better than NB in 69%
of the cases with 73% of those cases being statistically significant
and having a large effect size.

Our results also show thatMEG is able to generate ensembles that
perform similarly or better than traditional classifiers in 45 (70%) out
of the 64 cases investigated. Moreover, MEG strictly outperforms
traditional classifiers in 39 out of the 64 (61%) cases considered with
the difference in 90% of those cases being statistically significant.

Answer to RQ1:MEG generates statistically better or at
least equivalent ensembles to traditional classifiers in 70%
of the cases.

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

Table 3: MCC values obtained on the test set by the base learners (NB, DT, k-NN, SVM), MEG, DIVACE, over 30 runs.

Version (training data) MEG DIVACE Stacking NB DT k-NN SVM

activemq-5.0.0 0.29 0.20 0.24 0.29 0.15 0.25 0.30
derby-10.2.1.6 0.40 0.25 0.22 0.37 0.24 0.16 -0.05
groovy-1.5.7 0.23 0.31 0.22 0.21 0.31 0.33 0.24
hbase-0.94.0 0.30 0.27 0.25 0.07 0.27 0.25 0.31
hive-0.9.0 0.20 0.19 0.10 0.21 0.19 0.07 0.22
jruby-1.1 0.23 0.28 0.16 0.22 0.30 0.29 0.20
lucene-2.3.0 0.18 0.13 0.12 0.18 0.13 0.11 0.12
wicket-1.3.0-B1 0.08 0.20 0.13 0.18 0.20 0.16 0.15

activemq-5.3.0 0.31 0.27 0.27 0.28 0.24 0.23 0.29
derby-10.3.1.4 0.39 0.31 0.31 0.37 0.30 0.28 0.38
groovy-1.6-B1 0.20 0.26 0.27 0.21 0.26 0.47 0.26
hbase-0.95.0 0.30 0.18 0.19 0.33 0.26 0.20 0.31
hive-0.10.0 0.28 0.27 0.27 0.18 0.26 0.19 0.23
jruby-1.5.0 0.19 0.28 0.10 0.17 0.28 0.27 0.17
lucene-3.0.0 0.06 0.05 0.09 0.19 0.04 0.14 0.00
wicket-1.3.0-B2 0.15 0.00 0.00 0.19 0.10 0.11 0.12

5.2 Answer to RQ2 – MEG Vs. Traditional

Ensemble

When compared to the state-of-the-art Stacking ensemble, results
show that MEG is able to generate similarly or better perform-
ing models in 14 out of the 16 cases under study (88%) with the
difference in 86% of those cases (12 out of 14) being statistically
significant with a large effect size.

To understand the performance of the ensemble, we analyse the
non-dominated solutions generated by MEG. We discovered that
Stacking, as an aggregation strategy, was selected in only 3% of
the cases; the least common type of generated ensembles. On the
other hand, we found that the most selected ensemble strategy by
MEG was Weighted Majority Voting, which simply counts the best
classifier’s vote twice and the other classifiers once. This strategy
was selected in 78% of the non-dominated ensembles.

Answer to RQ2:MEG is able to generate ensembles that
perform similarly or better than Stacking in 88% of the
cases. The difference in results obtained by MEG is statis-
tically significantly better in 75% of the cases with a large
effect size.

5.3 Answer to RQ3 – MEG Vs. Pareto-ensemble

We also compare the ensembles generated by MEG to those gener-
ated by DIVACE. Results show that MEG outperforms DIVACE in 11
out of 16 cases studied (69%). This finding is also supported by the
statistical tests showing that, in 82% of these cases, the difference
is statistically significantly better and the effect size is large.

We further investigated the solutions generated by both these
approaches and we found some interesting behavioural differences
when it comes to the nature of the solutions. While MEG produced
solutions consisting of a more heterogeneous set of classifiers with
a mean and median number of classifiers equal to 2.41 and 2, respec-
tively, DIVACE’s behaviour was more homogeneous. In most cases,
DIVACE generated non-dominated solutions that were retained

across generations resulting in ensembles comprised of 100 clas-
sifiers, out of which ≈98 were entirely of a homogeneous nature.
MEG, on the other hand, generated a smaller set of heterogeneous
ensembles with the largest number of classifiers being equal to 11.
This shows that an ensemble consisting of a small heterogeneous
set of classifiers yields better results than one comprising of a large
set of homogeneous classifiers.

Answer to RQ3: MEG generates ensembles that are sim-
ilar or statistically better to those produced by DIVACE
in 69% of the cases, with the difference in 82% of them
being statistically significant.

5.4 Final Remarks

MEG yielded statistically significantly better results than the other
algorithms in most of the cases. To be precise, if we consider all
comparisons betweenMEG and the other techniques, MEG is able to
generate ensembles producing similar or more accurate predictions
than those produced by the other approaches in 73% of the cases
(with favourable large effect sizes in 80% of them). In the minority
of the cases (27%) where MEG does not statistically significantly
outperform all other approaches we observed that the number
of faulty modules in the training data is lower than 10%, or the
training data consists of less than 1,000 modules. For these cases,
we also observed that MEG’s ensembles achieve better MCC values
than those produced by traditional ML and Pareto-ensemble in the
training phase, thus suggesting that its ensembles may overfit when
the training data is small or contain few of defective instance.

The positive results obtained by using MEG in the majority of
the cases investigated herein, suggest its use could be convenient
for several reasons.

First, MEG removes from the engineer hands the burdensome,
error-prone, and time-consuming task of building, or even selecting,
an ensemble/classifier. Since it is all automated, the engineer can
simply use MEG to generate robust ensembles.

MEG: Multi-objective Ensemble Generation for Software Defect Prediction ESEM’22, September 19–23, 2022, Helsinki, Finland

Table 4: Mann-Withney U pair-wise test results / Vargha-Delaney Â12 effect sizes obtained comparing MEG with DIVACE,

Stacking, and base classifiers (NB, DT, k-NN, SVM). Â12: Large – L; Medium – M; Small – S; Negligible – N. Cells highlighted

in blue (p-value < 0.05 and effect size > 0.5) indicate that MEG is statistically significantly better than the algorithms in the

corresponding columns. Cells highlighted in orange (p-value < 0.05 and effect sizes < 0.5) indicate that MEG is significantly

statisticallyworse. The last three rows show the number of timesMEGyields better, equivalent, andworse results, respectively.

Version (training data) DIVACE Stacking NB DT k-NN SVM

activemq-5.0.0 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L)
derby-10.2.1.6 <0.01 / 0.8 (L) <0.01 / 0.83 (L) <0.01 / 0.8 (L) <0.01 / 0.83 (L) <0.01 / 0.83 (L) <0.01 / 1.0 (L)
groovy-1.5.7 <0.01 / 0.14 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.03 (L)
hbase-0.94.0 <0.01 / 0.93 (L) <0.01 / 0.93 (L) <0.01 / 1.0 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L) 0.058 / 0.37 (S)
hive-0.9.0 0.197 / 0.6 (S) <0.01 / 1.0 (L) <0.01 / 0.0 (L) 1.0 / 0.5 (N) <0.01 / 1.0 (L) <0.01 / 0.0 (L)
jruby-1.1 <0.01 / 0.24 (L) 0.638 / 0.53 (N) 0.638 / 0.53 (N) <0.01 / 0.03 (L) <0.01 / 0.03 (L) 0.638 / 0.53 (N)
lucene-2.3.0 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.83 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L)
wicket-1.3.0-B1 <0.01 / 0.25 (L) 0.64 / 0.47 (N) 0.345 / 0.43 (N) <0.01 / 0.0 (L) 0.64 / 0.47 (N) 0.64 / 0.47 (N)

activemq-5.3.0 <0.01 / 0.83 (L) <0.01 / 1.0 (L) 0.151 / 0.6 (S) <0.01 / 1.0 (L) <0.01 / 1.0 (L) 0.151 / 0.6 (S)
derby-10.3.1.4 <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.77 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 0.77 (L)
groovy-1.6-B1 <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L)
hbase-0.95.0 <0.01 / 0.96 (L) <0.01 / 1.0 (L) <0.01 / 0.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) 0.057 / 0.37 (S)
hive-0.10.0 <0.01 / 0.92 (L) <0.01 / 0.9 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L) <0.01 / 1.0 (L)
jruby-1.5.0 <0.01 / 0.12 (L) <0.01 / 1.0 (L) <0.01 / 0.9 (L) <0.01 / 0.0 (L) <0.01 / 0.0 (L) <0.01 / 0.9 (L)
lucene-3.0.0 0.587 / 0.54 (N) <0.01 / 0.07 (L) <0.01 / 0.0 (L) <0.01 / 0.8 (L) <0.01 / 0.0 (L) <0.01 / 1.0 (L)
wicket-1.3.0-B2 <0.01 / 0.99 (L) <0.01 / 1.0 (L) <0.01 / 0.1 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L) <0.01 / 0.93 (L)

MEG is better 9 12 8 10 10 7
MEG is equivalent 2 2 3 1 1 5
MEG is worse 5 2 5 5 5 4

Second, MEG can generate ensembles that can yield good pre-
dictions for future versions of a software. This is shown by the
results achieved by the generated ensembles when trained on the
first available software version, and tested on the latest.

Third, MEG can be extended and adapted to the engineers’ needs.
In this paper, we focused on MCC as a measure of performance ac-
curacy given that it is a comprehensive and balanced measure [51].
However, there might be cases where it may be more important
to minimize one type of classification error. For example, an en-
gineer might want to reduce the number of false negatives to the
very minimum when predicting defects for mission and safety crit-
ical software systems (e.g., software controlling autopilot, medical
devices) in which even a single failure can have serious adverse
effects [51]. In this case, MEG can be extended to be guided by a
fitness function devised for a specific goal.

Regarding the qualitative results, we analysed possible correla-
tions between the results of the generated ensembles and possible
imbalance in the data with respect to the percentages of defective
and non-defective classes. However, we did not find any clear pat-
tern. It seems that the results of the ensembles generated by MEG
are more influenced by the individual predictions of each base clas-
sifier. For instance, when predicting defects for Derby, SVM showed
very good results during training (training and validation MCC
values higher than 0.7), but very poor performance during testing
(negative MCC value). When analysing the ensembles generated by
MEG for this program, we found out that when SVM was added to
the ensemble, the resulting MCC values would drop from around
0.40 to 0.02. The drop is noticeable and undeniably significant, but
luckily it is an exception, not the rule.

In our experiments, each of MEG’s independent runs took from
6–48 hours, which is greater than the time needed to perform the

automated hyper-parameter tuning of the state-of-the-art algo-
rithms (2–24 hours). While the time taken by the state-of-the-art
is generally lower as it includes only training and possibly tuning,
MEG’s running time is higher because it also encompasses the
automatic selection of classifiers, voting strategies, and tuning of
parameters. This procedure is analogous to the experimentation,
tuning, and selection of many different algorithms that are usually
done manually by the engineers. If we compare the time and ex-
pertise that would be required by the engineer to perform these
tasks, using MEG saves time and effort overall. This is a common
trade-off for automated search based approaches, as observed in
previous work [26].

6 RELATEDWORK

Search-based Software Engineering has been shown to be a power-
ful tool to address Software Engineering prediction tasks [60], such
as software effort estimation, change prediction, defect prediction
and maintainability prediction [41]. In the context of defect predic-
tion previous studies have investigated the use of both single- (e.g.,
[30, 48, 62, 68]) and multi-objective search-based approaches [15]
to either build or fine-tune learning models. However, no previous
defect prediction study has investigated the use of search-based
approaches to guide the construction of ensemble models, which
have instead been exploited to solve general-purpose classification
tasks (see Section 6.2). On the other hand, several ensemble learning
techniques have been previously explored to build defect prediction
models [5, 6, 39, 43, 56, 71], however to the best of our knowledge,
the work by Petrić et al. [53] is the only to contemplate diversity,
together with accuracy, in order to build more robust ensembles.

We refer the reader to existing literature surveys for more details
on machine learning models for defect prediction [27], search-based

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

approaches for defect prediction [41], ensemble models for defect
prediction [2, 43], and general-purpose evolutionary ensembles [57].
The rest of this section focuses on the work most related to ours.

6.1 Defect Prediction Ensemble Based on

Diversity and Accuracy

Bowes et al. [11] and Panichella et al. [52] were the first to investi-
gate the role of diversity in machine learning classifiers for defect
prediction, unveiling that different classifiers predict different sub-
sets of defects in datasets [11, 12, 52]. Subsequently, Petrić et al.
investigated the use of diversity as a measure, in combination with
accuracy, to guide the engineer in the design of ensembles for defect
prediction [53] based on the intuition that the combination of an
explicit diversity technique with a stacking ensemble could improve
its prediction performance. To validate their proposal they carried
out a thorough empirical study by comparing several stacking pro-
cedures manually designed to investigate how to best combine
base classifiers based on diversity and accuracy measures, and they
compared these with other types of ensembles such as bagging and
boosting. They found that using a stacking built based to both, accu-
racy and diversity measures, produced the best results. We further
exploit this intuition, and propose MEG which leverages the power
of MOEAs to automatically search for optimal ensemble according
to accuracy and diversity. Our proposal has the main advantage of
relieving the engineer from the burden of manually designing an
ensemble, which is instead required in previous work [53]. Besides,
our results show that MEG outperforms the best ensemble defect
prediction found by Petrić et al. [53] (see Section 5).

6.2 MOEAs for Ensemble Generation

Previous work has explored the use of Multi-Objective Evolutionary
Algorithms (MOEAs) [37] in the context of ensemble generation
by considering both accuracy and diversity as target objectives
for different domains [1, 17, 24, 46] but none had been previously
employed in the context of defect prediction.

All these work rely on the Pareto approach to generate the en-
sembles (see Section 2.3). Among these, the closest work to ours
is that by Chandra and Yao [17], who used multi-objective opti-
misation based on NSGA-II in their algorithm called DIVACE, to
evolve and train the set of weights of 3-layer neural networks by
simultaneously optimising accuracy and diversity.

Studies in the AutoML literature have also investigated EAs for
such optimisations, such as Autostacker [18]. However, work in this
area generally optimises the parameters of the classifier composing
the multi-layered ensemble, but does not encompass their selection
or the aggregation strategy choice. Other work used MOEAs to
make an optimal selection of pre-defined (or pre-trained) classifiers
with feature selection for other classification tasks [18, 23, 25, 28, 59].
None leverage diversity as an objective.

In this paper, we instead propose an alternative and novel way to
automatically generate ensemble models, based on whole-ensemble
generationwhich is guided by the simultaneous use of diversity and
accuracy. MEG has several advantages (as explained in Sections 3
and 5.4) and has achieved similar or significantly better results than
DIVACE in our empirical study (see Section 5).

7 CONCLUSIONS AND FUTUREWORK

In this paper, we proposed MEG, a Multi-objective Ensemble Gen-
eration algorithm for defect prediction.

MEG is a novel technique, which, unlike previous MOEA-based
ensemble generation, evolves a population of ensembles (i.e., whole-
ensemble generations) rather than a population of base classifiers
(i.e, Pareto-ensemble generation). Furthermore, MEG relies on both
accuracy and diversity of ensembles to guide the search towards
robust ensembles, which has not been previously evaluated in the
context of defect prediction.

In our large-scale empirical study involving a total of 24 software
versions from 8 different open-source projects, and both baselines
and state-of-the-art benchmarks, we show that MEG is able to
generate ensembles that achieve comparable or statistically signifi-
cantly more accurate predictions for 73% of the comparisons, with
large effect sizes in 80% of these cases.

These results show that our novel whole-ensemble generation
approach, MEG, not only advances the state-of-the-art of ensemble
in defect prediction (where multi-objective evolutionary ensemble
had never been investigated) but it is also more effective than Pareto-
ensemble generation algorithm. In addition, the benefits of MEG do
not only lie on the higher accuracy of the generated ensembles,
but also on the benefits of having an approach that automatically
searches for an optimal design: This spares the engineer from the
tedious, time-consuming, and error-prone activity of manually de-
signing and experimenting.

The proposal of a novel whole-ensemble generation, such as MEG,
opens up a variety of avenues for future work, including but not
limited to the following:

• Investigating the effectiveness of alternative solution repre-
sentations considering additional learners and aggregation
strategies.

• Investigating the effect of using other measures as fitness func-
tion to guide the ensemble evolution, in combination or in
alternative to the measures explored herein. These include
the use of other diversity measures, and performance mea-
sures such as the classification stability [67] and the effort
required for source code inspection [33, 44].

• Investigating MOEAs other than NSGA-II (e.g., MOEA/D,
IBEA, MOCell, SPEA2) in order to assess to what extent the
effectiveness of MEG varies depending on the underlying
multi-objective algorithm [69].

• Investigating Deep-Learning (DL) in combination with MEG,
to assess if this would further increase the ensemble predic-
tion performance. DL approaches have recently been pro-
posed to extract from the source code features which are
subsequently used as an input (together or in alternative
to traditional code metrics) to train a base binary classifier
[72] for defect prediction. Our proposed approach, MEG,
uses traditional code metrics yet it combines multiple dif-
ferent binary classifiers automatically searching for the best
configuration. These approaches are different in nature: DL
augments the training data, while MEG searches for an opti-
mal configuration of multiple binary classifiers. It would be
interesting in future work to explore such a combined use.

MEG: Multi-objective Ensemble Generation for Software Defect Prediction ESEM’22, September 19–23, 2022, Helsinki, Finland

ACKNOWLEDGMENTS

Rebecca Moussa, Giovani Guizzo and Federica Sarro are funded
by the ERC advanced fellowship grant 741278 (EPIC: Evolutionary
Program Improvement Collaborators).

REFERENCES

[1] Hussein A Abbass. 2003. Pareto neuro-evolution: Constructing ensemble of
neural networks using multi-objective optimization. In The 2003 Congress on
Evolutionary Computation, 2003. CEC’03., Vol. 3. IEEE, 2074–2080.

[2] Wasif Afzal and Richard Torkar. 2011. Review: On the Application of Genetic
Programming for Software Engineering Predictive Modeling: A Systematic Re-
view. Expert Syst. Appl. 38, 9 (sep 2011), 11984–11997. https://doi.org/10.1016/j.
eswa.2011.03.041

[3] Wasif Afzal, Richard Torkar, Robert Feldt, and Tony Gorschek. 2014. Prediction of
faults-slip-through in large software projects: an empirical evaluation. Software
quality journal 22, 1 (2014), 51–86.

[4] Aalok Ahluwalia, Massimiliano Di Penta, and Davide Falessi. 2020. On the Need
of Removing Last Releases of Data When Using or Validating Defect Prediction
Models. arXiv preprint arXiv:2003.14376 (2020).

[5] Hamad Alsawalqah, Neveen Hijazi, Mohammed Eshtay, Hossam Faris, Ahmed Al
Radaideh, Ibrahim Aljarah, and Yazan Alshamaileh. 2020. Software Defect Predic-
tion Using Heterogeneous Ensemble Classification Based on Segmented Patterns.
Applied Sciences 10, 5 (2020). https://doi.org/10.3390/app10051745

[6] Arsalan AhmedAnsari, Amaan Iqbal, and Bibhudatta Sahoo. 2020. Heterogeneous
Defect Prediction Using Ensemble Learning Technique. In Artificial Intelligence
and Evolutionary Computations in Engineering Systems, Subhransu Sekhar Dash,
C. Lakshmi, SwagatamDas, and Bijaya Ketan Panigrahi (Eds.). Springer Singapore,
Singapore, 283–293.

[7] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (May 2014), 219–250. https://doi.org/10.1002/
stvr.1486

[8] Abdul Ali Bangash, Hareem Sahar, Abram Hindle, and Karim Ali. 2020. On
the time-based conclusion stability of cross-project defect prediction models.
Empirical Software Engineering 25, 6 (2020), 5047–5083.

[9] Yijun Bian and Huanhuan Chen. 2021. When Does Diversity Help Generalization
in Classification Ensembles? IEEE Transactions on Cybernetics (2021), 1–17. https:
//doi.org/10.1109/tcyb.2021.3053165

[10] David Bowes, Tracy Hall, Mark Harman, Yue Jia, Federica Sarro, and Fan Wu.
2016. Mutation-aware fault prediction. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 330–341.

[11] David Bowes, TracyHall, and Jean Petrić. 2015. Different Classifiers Find Different
Defects Although With Different Level of Consistency. In Proceedings of the 11th
International Conference on Predictive Models and Data Analytics in Software
Engineering. ACM. https://doi.org/10.1145/2810146.2810149

[12] David Bowes, Tracy Hall, and Jean Petrić. 2017. Software defect prediction: do
different classifiers find the same defects? Software Quality Journal 26, 2 (Feb.
2017), 525–552. https://doi.org/10.1007/s11219-016-9353-3

[13] Gavin Brown, JeremyWyatt, Rachel Harris, and Xin Yao. 2005. Diversity creation
methods: a survey and categorisation. Information Fusion 6, 1 (March 2005), 5–20.
https://doi.org/10.1016/j.inffus.2004.04.004

[14] Christopher JC Burges. 1998. A tutorial on support vector machines for pattern
recognition. Data mining and knowledge discovery 2, 2 (1998), 121–167.

[15] Gerardo Canfora, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Anni-
bale Panichella, and Sebastiano Panichella. 2015. Defect prediction as a multiob-
jective optimization problem. Software Testing, Verification and Reliability 25, 4
(2015), 426–459.

[16] Cagatay Catal and Banu Diri. 2009. A systematic review of software fault predic-
tion studies. Expert systems with applications 36, 4 (2009), 7346–7354.

[17] Arjun Chandra and Xin Yao. 2006. Ensemble Learning Using Multi-Objective
Evolutionary Algorithms. Journal of Mathematical Modelling and Algorithms 5, 4
(March 2006), 417–445. https://doi.org/10.1007/s10852-005-9020-3

[18] Boyuan Chen, Harvey Wu, Warren Mo, Ishanu Chattopadhyay, and Hod Lipson.
2018. Autostacker: A Compositional Evolutionary Learning System. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (Kyoto, Japan)
(GECCO’18). 402—-409. https://doi.org/10.1145/3205455.3205586

[19] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182–197. https://doi.org/10.1109/4235.996017

[20] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro.
2011. A genetic algorithm to configure support vector machines for predicting
fault-prone components. In International conference on product focused software
process improvement. Springer, 247–261.

[21] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical

Software Engineering 17, 4-5 (2012), 531–577.
[22] Davide Falessi, Jacky Huang, Likhita Narayana, Jennifer Fong Thai, and Burak

Turhan. 2020. On the need of preserving order of data when validating within-
project defect classifiers. Empirical Software Engineering (2020), 1–26.

[23] Sam Fletcher, Brijesh Verma, and Mengjie Zhang. 2020. A non-specialized en-
semble classifier using multi-objective optimization. Neurocomputing 409 (Oct.
2020), 93–102. https://doi.org/10.1016/j.neucom.2020.05.029

[24] Christian Gagné, Michèle Sebag, Marc Schoenauer, and Marco Tomassini. 2007.
Ensemble learning for free with evolutionary algorithms?. In Proceedings of the
9th annual conference on Genetic and evolutionary computation - GECCO '07. ACM
Press. https://doi.org/10.1145/1276958.1277317

[25] Shenkai Gu and Yaochu Jin. 2014. Generating diverse and accurate classi-
fier ensembles using multi-objective optimization. In 2014 IEEE Symposium
on Computational Intelligence in Multi-Criteria Decision-Making (MCDM). IEEE.
https://doi.org/10.1109/mcdm.2014.7007182

[26] Giovani Guizzo, Federica Sarro, Jens Krinke, and Silvia Regina Vergilio. 2020.
Sentinel: A Hyper-Heuristic for the Generation of Mutant Reduction Strategies.
IEEE Transactions on Software Engineering (2020), 1–1. https://doi.org/10.1109/
TSE.2020.3002496

[27] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. 2011.
A systematic literature review on fault prediction performance in software engi-
neering. IEEE Transactions on Software Engineering 38, 6 (2011), 1276–1304.

[28] Kate Han, Tien Pham, TrungHieu Vu, TruongDang, JohnMcCall, and Tien Thanh
Nguyen. 2021. VEGAS: A Variable Length-Based Genetic Algorithm for Ensemble
Selection in Deep Ensemble Learning. In Intelligent Information and Database
Systems. Springer International Publishing, 168–180. https://doi.org/10.1007/978-
3-030-73280-6_14

[29] Mark Harman, Syed Islam, Yue Jia, Leandro L Minku, Federica Sarro, and Komsan
Srivisut. 2014. Less is more: Temporal fault predictive performance over multiple
hadoop releases. In International Symposium on Search Based Software Engineering.
Springer, 240–246.

[30] Mark Harman, Syed Islam, Yue Jia, Leandro L. Minku, Federica Sarro, and Komsan
Srivisut. 2014. Less is More: Temporal Fault Predictive Performance over Multiple
Hadoop Releases. In Search-Based Software Engineering. Springer International
Publishing, Cham, 240–246.

[31] Mark Harman, Phil McMinn, Jerffeson Teixeira De Souza, and Shin Yoo. 2011.
Search based software engineering: Techniques, taxonomy, tutorial. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7007 LNCS (2011), 1–59. https://doi.org/10.1007/
978-3-642-25231-0_1

[32] John H. Holland. 1992. Adaptation in Natural and Artificial Systems An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press. 232 pages.

[33] Qiao Huang, Xin Xia, and David Lo. 2017. Supervised vs Unsupervised Models:
A Holistic Look at Effort-Aware Just-in-Time Defect Prediction. In 2017 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 159–170.
https://doi.org/10.1109/ICSME.2017.51

[34] Matthieu Jimenez, Renaud Rwemalika, Mike Papadakis, Federica Sarro, Yves
Le Traon, and Mark Harman. 2019. The importance of accounting for real-world
labelling when predicting software vulnerabilities. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 695–705.

[35] Jasper Jolly. 2019. Passenger anger as tens of thousands hit by BA systems fail-
ure. https://www.theguardian.com/business/2019/aug/07/british-airways-it-
glitch-causes-disruption-for-passengers-delays

[36] Sunghun Kim. 2012. Defect, defect, defect: Defect prediction 2.0. In Proceedings
of the 8th International Conference on Predictive Models in Software Engineering.
1–2.

[37] Abdullah Konak, David W. Coit, and Alice E. Smith. 2006. Multi-objective opti-
mization using genetic algorithms: A tutorial. Reliability Engineering & System
Safety 91, 9 (Sept. 2006), 992–1007. https://doi.org/10.1016/j.ress.2005.11.018

[38] Ludmila I Kuncheva and Christopher J Whitaker. 2003. Measures of diversity in
classifier ensembles and their relationship with the ensemble accuracy. Machine
learning 51, 2 (2003), 181–207.

[39] Issam H. Laradji, Mohammad Alshayeb, and Lahouari Ghouti. 2015. Software
defect prediction using ensemble learning on selected features. Information and
Software Technology 58 (2015), 388–402. https://doi.org/10.1016/j.infsof.2014.07.
005

[40] Cynthia C. S. Liem and Annibale Panichella. 2020. Run, Forest, Run? On Ran-
domization and Reproducibility in Predictive Software Engineering.

[41] Ruchika Malhotra, Megha Khanna, and Rajeev R. Raje. 2017. On the application
of search-based techniques for software engineering predictive modeling: A
systematic review and future directions. Swarm and Evolutionary Computation
32 (2017), 85–109. https://doi.org/10.1016/j.swevo.2016.10.002

[42] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/1177730491

https://doi.org/10.1016/j.eswa.2011.03.041
https://doi.org/10.1016/j.eswa.2011.03.041
https://doi.org/10.3390/app10051745
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1109/tcyb.2021.3053165
https://doi.org/10.1109/tcyb.2021.3053165
https://doi.org/10.1145/2810146.2810149
https://doi.org/10.1007/s11219-016-9353-3
https://doi.org/10.1016/j.inffus.2004.04.004
https://doi.org/10.1007/s10852-005-9020-3
https://doi.org/10.1145/3205455.3205586
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.neucom.2020.05.029
https://doi.org/10.1145/1276958.1277317
https://doi.org/10.1109/mcdm.2014.7007182
https://doi.org/10.1109/TSE.2020.3002496
https://doi.org/10.1109/TSE.2020.3002496
https://doi.org/10.1007/978-3-030-73280-6_14
https://doi.org/10.1007/978-3-030-73280-6_14
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1007/978-3-642-25231-0_1
https://doi.org/10.1109/ICSME.2017.51
https://www.theguardian.com/business/2019/aug/07/british-airways-it-glitch-causes-disruption-for-passengers-delays
https://www.theguardian.com/business/2019/aug/07/british-airways-it-glitch-causes-disruption-for-passengers-delays
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.infsof.2014.07.005
https://doi.org/10.1016/j.swevo.2016.10.002
https://doi.org/10.1214/aoms/1177730491

ESEM’22, September 19–23, 2022, Helsinki, Finland Moussa et al.

[43] Faseeha Matloob, Taher M Ghazal, Nasser Taleb, Shabib Aftab, Munir Ahmad,
Muhammad Adnan Khan, Sagheer Abbas, and Tariq Rahim Soomro. 2021. Soft-
ware Defect Prediction using Ensemble Learning: A Systematic Literature Review.
IEEE Access (2021).

[44] Thilo Mende and Rainer Koschke. 2010. Effort-Aware Defect Prediction Models.
In 2010 14th European Conference on Software Maintenance and Reengineering.
107–116. https://doi.org/10.1109/CSMR.2010.18

[45] Tim Menzies, Alex Dekhtyar, Justin Distefano, and Jeremy Greenwald. 2007.
Problems with Precision: A Response to "Comments on ’Data Mining Static Code
Attributes to Learn Defect Predictors’". IEEE Transactions on Software Engineering
33, 9 (2007), 637–640. https://doi.org/10.1109/TSE.2007.70721

[46] Leandro L. Minku and Xin Yao. 2013. An analysis of multi-objective evo-
lutionary algorithms for training ensemble models based on different per-
formance measures in software effort estimation. In Proceedings of the 9th
International Conference on Predictive Models in Software Engineering. ACM.
https://doi.org/10.1145/2499393.2499396

[47] Raimund Moser, Witold Pedrycz, and Giancarlo Succi. 2008. A comparative
analysis of the efficiency of change metrics and static code attributes for de-
fect prediction. In Proceedings of the 30th international conference on Software
engineering. 181–190.

[48] Rebecca Moussa and Danielle Azar. 2017. A PSO-GA approach targeting fault-
prone software modules. Journal of Systems and Software 132 (2017), 41–49.

[49] Rebecca Moussa, Giovani Guizzo, and Federica Sarro. 2022. MEG - On-line
GitHub repository. https://github.com/SOLAR-group/MEG

[50] Rebecca Moussa and Federica Sarro. 2022. Do Not Take It for Granted: Comparing
Open-Source Libraries for Software Development Effort Estimation. https:
//arxiv.org/pdf/2207.01705.pdf

[51] Rebecca Moussa and Federica Sarro. 2022. On the Use of Evaluation Measures
for Defect Prediction Studies. In 2022 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA). ACM.

[52] Annibale Panichella, Rocco Oliveto, and Andrea De Lucia. 2014. Cross-project
defect prediction models: L’union fait la force. In 2014 Software Evolution Week-
IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, 164–173.

[53] Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Bad-
doo. 2016. Building an Ensemble for Software Defect Prediction Based on
Diversity Selection. In Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM. https:
//doi.org/10.1145/2961111.2962610

[54] Foyzur Rahman and Premkumar Devanbu. 2013. How, and why, process metrics
are better. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 432–441.

[55] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri,
Breno Bernard Nicolau de França, Carlo Alberto Furia, Greg Gay, Nicolas Gold,
Daniel Graziotin, Pinjia He, Rashina Hoda, Natalia Juristo, Barbara Kitchen-
ham, Valentina Lenarduzzi, Jorge Martínez, Jorge Melegati, Daniel Mendez,
Tim Menzies, Jefferson Molleri, Dietmar Pfahl, Romain Robbes, Daniel Russo,
Nyyti Saarimäki, Federica Sarro, Davide Taibi, Janet Siegmund, Diomidis Spinel-
lis, Miroslaw Staron, Klaas Stol, Margaret-Anne Storey, Davide Taibi, Damian
Tamburri, Marco Torchiano, Christoph Treude, Burak Turhan, Xiaofeng Wang,
and Sira Vegas. 2021. Empirical Standards for Software Engineering Research.
arXiv:2010.03525 [cs.SE]

[56] Santosh Rathore and Sandeep Kumar. 2021. An empirical study of ensemble
techniques for software fault prediction. Applied Intelligence 51 (June 2021), 1–30.
https://doi.org/10.1007/s10489-020-01935-6

[57] Ye Ren, Le Zhang, and P.N. Suganthan. 2016. Ensemble Classification and
Regression-Recent Developments, Applications and Future Directions [Review
Article]. IEEE Computational Intelligence Magazine 11, 1 (2016), 41–53. https:
//doi.org/10.1109/MCI.2015.2471235

[58] Steven L Salzberg. 1994. C4. 5: Programs for machine learning by j. ross quinlan.
morgan kaufmann publishers, inc., 1993.

[59] E.M. Dos Santos, R. Sabourin, and P. Maupin. 2006. Single and Multi-Objective
Genetic Algorithms for the Selection of Ensemble of Classifiers. In The 2006

IEEE International Joint Conference on Neural Network Proceedings. IEEE. https:
//doi.org/10.1109/ijcnn.2006.247267

[60] Federica Sarro. 2019. Search-Based Predictive Modelling for Software Engi-
neering: How Far Have We Gone?. In Search-Based Software Engineering - 11th
International Symposium, SSBSE 2019, Tallinn, Estonia, August 31 - September 1,
2019, Proceedings (Lecture Notes in Computer Science, Vol. 11664). Springer, 3–7.
https://doi.org/10.1007/978-3-030-27455-9_1

[61] Federica Sarro, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino. 2012.
A further analysis on the use of genetic algorithm to configure support vector
machines for inter-release fault prediction. In Proceedings of the 27th annual ACM
symposium on applied computing. 1215–1220.

[62] Federica Sarro, Sergio Di Martino, Filomena Ferrucci, and Carmine Gravino. 2012.
A Further Analysis on the Use of Genetic Algorithm to Configure Support Vector
Machines for Inter-Release Fault Prediction. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing (SAC ’12). ACM, New York, NY, USA,
1215–1220. https://doi.org/10.1145/2245276.2231967

[63] Martin Shepperd, David Bowes, and Tracy Hall. 2014. Researcher bias: The use
of machine learning in software defect prediction. IEEE Transactions on Software
Engineering 40, 6 (2014), 603–616.

[64] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in
software project estimation. Information and Software Technology 54, 8 (2012),
820–827.

[65] NC Shrikanth, Suvodeep Majumder, and Tim Menzies. 2021. Early Life Cycle
Software Defect Prediction. Why? How?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 448–459.

[66] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi
Matsumoto. 2016. An empirical comparison of model validation techniques for
defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2016),
1–18.

[67] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2017. An Empirical Comparison of Model Validation Techniques for
Defect Prediction Models. IEEE Transactions on Software Engineering 43, 1 (2017),
1–18. https://doi.org/10.1109/TSE.2016.2584050

[68] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi
Matsumoto. 2019. The Impact of Automated Parameter Optimization on Defect
Prediction Models. IEEE Transactions on Software Engineering 45, 7 (2019), 683–
711. https://doi.org/10.1109/TSE.2018.2794977

[69] Vali Tawosi, Federica Sarro, Alessio Petrozziello, and Mark Harman. 2021. Multi-
Objective Software Effort Estimation: A Replication Study. IEEE Transactions on
Software Engineering (2021), 1–1. https://doi.org/10.1109/TSE.2021.3083360

[70] Ian H Witten, Eibe Frank, and Mark A Hall. 2005. Practical machine learning
tools and techniques. Morgan Kaufmann (2005), 578.

[71] Xiaoxing Yang, Xin Li, Wushao Wen, and Jianmin Su. 2019. An Investigation
of Ensemble Approaches to Cross-Version Defect Prediction. 437–442. https:
//doi.org/10.18293/SEKE2019-113

[72] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. 2015. Deep learn-
ing for just-in-time defect prediction. In 2015 IEEE International Conference on
Software Quality, Reliability and Security. IEEE, 17–26.

[73] Jingxiu Yao and Martin Shepperd. 2020. Assessing software defection predic-
tion performance: why using the Matthews correlation coefficient matters. In
Proceedings of the Evaluation and Assessment in Software Engineering. 120–129.

[74] Suraj Yatish, Jirayus Jiarpakdee, Patanamon Thongtanunam, and Chakkrit Tan-
tithamthavorn. 2019. Mining software defects: should we consider affected
releases?. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 654–665.

[75] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting
defects for eclipse. In Third International Workshop on Predictor Models in Software
Engineering (PROMISE’07: ICSE Workshops 2007). IEEE, 9–9.

[76] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. 2000. Comparison of Multiob-
jective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8,
2 (June 2000), 173–195. https://doi.org/10.1162/106365600568202

[77] Eckart Zitzler and SimonKünzli. 2004. Indicator-Based Selection inMultiobjective
Search. In International Conference on Parallel Problem Solving from Nature. 832–
842. https://doi.org/10.1007/978-3-540-30217-9_84

https://doi.org/10.1109/CSMR.2010.18
https://doi.org/10.1109/TSE.2007.70721
https://doi.org/10.1145/2499393.2499396
https://github.com/SOLAR-group/MEG
https://arxiv.org/pdf/2207.01705.pdf
https://arxiv.org/pdf/2207.01705.pdf
https://doi.org/10.1145/2961111.2962610
https://doi.org/10.1145/2961111.2962610
https://arxiv.org/abs/2010.03525
https://doi.org/10.1007/s10489-020-01935-6
https://doi.org/10.1109/MCI.2015.2471235
https://doi.org/10.1109/MCI.2015.2471235
https://doi.org/10.1109/ijcnn.2006.247267
https://doi.org/10.1109/ijcnn.2006.247267
https://doi.org/10.1007/978-3-030-27455-9_1
https://doi.org/10.1145/2245276.2231967
https://doi.org/10.1109/TSE.2016.2584050
https://doi.org/10.1109/TSE.2018.2794977
https://doi.org/10.1109/TSE.2021.3083360
https://doi.org/10.18293/SEKE2019-113
https://doi.org/10.18293/SEKE2019-113
https://doi.org/10.1162/106365600568202
https://doi.org/10.1007/978-3-540-30217-9_84

	Abstract
	1 Introduction
	2 Background
	2.1 Defect Prediction
	2.2 Ensemble Learning
	2.3 Multi-Objective Evolutionary Optimisation

	3 MEG: Multi-objective Ensemble Generation
	3.1 Representation
	3.2 Fitness Functions
	3.3 Genetic Operators
	3.4 Implementation Aspects

	4 Experimental Design
	4.1 Research Questions
	4.2 Benchmark Techniques
	4.3 Datasets
	4.4 Validation Criteria
	4.5 Evaluation Criteria
	4.6 Threats to Validity

	5 Results
	5.1 Answer to RQ1 – MEG Vs. Base Classifiers
	5.2 Answer to RQ2 – MEG Vs. Traditional Ensemble
	5.3 Answer to RQ3 – MEG Vs. Pareto-ensemble
	5.4 Final Remarks

	6 Related Work
	6.1 Defect Prediction Ensemble Based on Diversity and Accuracy
	6.2 MOEAs for Ensemble Generation

	7 Conclusions and Future Work
	Acknowledgments
	References

