
On the Relationship Between Story Points and Development
Effort in Agile Open-Source Software

Vali Tawosi
University College London

London, UK
vali.tawosi@ucl.ac.uk

Rebecca Moussa
University College London

London, UK
rebecca.moussa.18@ucl.ac.uk

Federica Sarro
University College London

London, UK
f.sarro@ucl.ac.uk

ABSTRACT
Background: Previous work has provided some initial evidence
that Story Point (SP) estimated by human-experts may not accu-
rately reflect the effort needed to realise Agile software projects.
Aims: In this paper, we aim to shed further light on the relationship
between SP and Agile software development effort to understand
the extent to which human-estimated SP is a good indicator of
user story development effort expressed in terms of time needed to
realise it. Method: To this end, we carry out a thorough empirical
study involving a total of 37,440 unique user stories from 37 differ-
ent open-source projects publicly available in the TAWOS dataset.
For these user stories, we investigate the correlation between the
issue development time (or its approximation when the actual time
is not available) and the SP estimated by human-expert by using
three widely-used correlation statistics (i.e., Pearson, Kendall and
Spearman). Furthermore, we investigate SP estimations made by
the human-experts in order to assess the extent to which they are
consistent in their estimations throughout the project, i.e., we as-
sess whether the development time of the issues is proportionate
to the SP assigned to them. Results: The average results across
the three correlation measures reveal that the correlation between
the human-expert estimated SP and the approximated develop-
ment time is strong for only 7% of the projects investigated, and
medium (58%) or low (35%) for the remaining ones. Similar results
are obtained when the actual development time is considered. Our
empirical study also reveals that the estimation made is often not
consistent throughout the project and the human estimator tends
to misestimate in 78% of the cases. Conclusions: Our empirical
results suggest that SP might not be an accurate indicator of open-
source Agile software development effort expressed in terms of
development time. The impact of its use as an indicator of effort
should be explored in future work, for example as a cost-driver in
automated effort estimation models or as the prediction target.

CCS CONCEPTS
• Software and its engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’22, September 19–23, 2022, Helsinki, Finland
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9427-7/22/09. . . $15.00
https://doi.org/10.1145/3544902.3546238

KEYWORDS
Software effort estimation; Story Point; Agile software.

ACM Reference Format:
Vali Tawosi, Rebecca Moussa, and Federica Sarro. 2022. On the Rela-
tionship Between Story Points and Development Effort in Agile Open-
Source Software. In ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) (ESEM ’22), September 19–
23, 2022, Helsinki, Finland. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3544902.3546238

1 INTRODUCTION
Software Effort Estimation (SEE) is a crucial activity for managing,
planning, and monitoring software projects [53]. Without an accu-
rate estimation of the effort required to develop software, budget
and schedule overrun seem inevitable [21, 44]. SEE research has
mainly focused on estimating the effort required to develop a whole
project (i.e., project-level estimation). To this end, Functional Size
Measures (FSM), such as Function Point (FP) [6] or COSMIC Func-
tion Point (CFP) [46], have been usually used as a cost driver to
estimate traditional software development effort [4, 14, 16, 17, 53].

The advent of Agile Software Development (ASD) methodologies
[19] has shifted the focus towards estimating the effort of develop-
ing smaller unit of software, like a new feature or change. In these
cases, FSM methods are not easy to use [38] and another measure,
namely Story Point (SP), has become popular in the context of ASD
[56]. SP is a relative unit that represents an intuitive mixture of
complexity and required effort of a user story (a.k.a. issue) [8, 53]. 1

However, previous studies have shown that the accuracy of the
SP estimate is sensitive to the practitioners’ expertise, and thus,
prone to bias. According to Usman et al. [55], who surveyed 60
engineers experienced in Agile Effort Estimation, the estimates
of around half of the Agile teams were inaccurate by a factor of
25% or more. Using inaccurate SP could result in iteration mis-
management and wrong prioritization of tasks, which in turn can
lead to customer dissatisfaction or even project failure. Moreover,
since human-expert estimated SP has been used as a cost driver to
train automated estimation models [24, 33, 35, 39, 54, 58] or as a
prediction target [2, 10, 20, 29, 34, 40, 43, 49, 50], researchers and
practitioners need to be aware if they are using inaccurate SP as
this might impact the accuracy of these models.

Previous case studies have provided discordant results on
whether SP can accurately capture software size and effort [10,
26, 37, 38], and to date there is not enough empirical evidence on
this matter. Our work aims to fill this gap by carrying out a thor-
ough large-scale empirical study investigating the extent to which

1A user story is a user-valued functionality which is specified in the form of one or
two sentences in the everyday language of the user.

https://doi.org/10.1145/3544902.3546238
https://doi.org/10.1145/3544902.3546238
https://doi.org/10.1145/3544902.3546238


ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

using Story Point reflects the effort needed to develop a user story
(i.e., issue development time). To this end, we analyse 37,440 user
stories coming from 37 Agile software projects tracked with Jira
[1], which are available in the TAWOS dataset [48]. To the best of
our knowledge this is the largest empirical study to date to investi-
gate the relationship between SP and effort in Agile open-source
projects. In particular, we aim to answer the questionWhat is the
relationship between the SP estimated for a given issue and its ac-
tual development time?. Since developers do not always record the
actual time they spent on the development of an issue [48] in the
issue tracking system, we compare three different proxies for the
development time computed using the issue changelog2 in order to
answer the question: To what extent can we approximate the actual
development time as reported by the developers?. Furthermore, since
one would expect issue development time to be proportionate to
the story point assigned to a certain issue, we also aim to answer
How consistent is the assignment of SP throughout a project?.

The results of our empirical study show that among the three
proxies, there is one which more closely reflects the development
time as recorded by the developers, namely the InProgress develop-
ment time. Moreover, we found that the correlation between this
issue development time and human-expert estimated SP is medium
or low for 93% of the projects we investigated. These results are in
line with those we obtained using the recorded development time
rather than the proxy and they highlight that SP is not an accurate
indicator of the software development effort. Moreover we found
that the human-expert estimation is not consistent throughout the
projects. Although SP can remain useful for agile teams to orga-
nize and plan their iterations, these results raise awareness that
the inaccuracy observed in the SP might be carried out into those
automated effort estimation models that use SP as a cost driver
to predict issue development time. Moreover, recent studies have
proposed the use of machine learning approaches to predict SP for
issues based on historical human-estimated SP. This means that
such approaches learn to imitate human-expert estimations at best
which in itself might be misleading of the actual effort needed to
realise an issue. Further work is needed to understand the extent to
which the use of inaccurate SP impact automated effort estimation
models, and whether the use of development time (actual or proxies
for it) can provide the engineers and managers with more reliable
and accurate models.

The rest of this paper is organised as follows. Section 2 provides
some background for those readers who are not familiar with soft-
ware size and effort measures, and issue tracking systems. Sections
3 and 4 present the design and results of our empirical study, re-
spectively. Section 5 discusses previous work most related to ours.
Final remarks and future work are discussed in Section 6.

2 BACKGROUND
In this section we briefly introduce the most common software
functional size and effort measures proposed in the literature. We
also give some background on Jira, the issue tracking system used
by the projects analysed in this study, and describe three proxy
measures for issue development time [48].

2The history of changes in the issue’s attributes.

2.1 Software Size Measures
Albrecht was the first to introduce a disciplined method for mea-
suring software product size, called Function Point Analysis (FPA),
based on the functionality the software product is built to deliver
to the customer [5]. Soon after, he showed that there is a strong
correlation between Function Points and the final effort of a soft-
ware [6]. Although FPA was designed to measure software from
the domain of business applications [47], it is still widely applied
in the software production industry [15].

COSMIC3 Function Point (CFP) method belongs to the second
generation of software functional size methods [46]. CFP also takes
non-functional requirements into consideration, and is suitable for
a broader range of application domains including, but not limited
to, business applications, web applications, mobile applications,
real-time software, and service-oriented software [4, 14, 18, 47].

In the context of Agile software development, practitioners have
introduced and used Story Point (SP) as an Agile specific software
size measurement unit [12]. Unlike FPA and CFP, SP do not follow
a method of measurement, therefore, developers use them as a
relative measure to keep the relative difference of stories in size by
assigning a point value to each user story. One common approach
to determine the story point value of a user story is to select one
of the smallest stories in the Backlog4 and assign it with one story
point. Then the more complex and larger user stories get more
points considering their size [12]. So any user story that is assigned
two SP is twice as large as a user story that is assigned one SP. SP
estimations need to be consistent throughout the project.

2.2 Jira Workflow and Issue Development Time
Jira [1] is a widely-used issue tracking system that supports Agile
development [31]. Using Jira, the development teams can record
their estimated story point and the time taken for the development
of the issue.

Although Jira Software has provided teams with specific fields
to record the actual effort (i.e., time) spent on an issue, usually the
developers do not use this feature to log their work. Thus, identify-
ing the actual time spent to develop an issue might be challenging.
Nonetheless, previous work [10, 48] derived an approximation of
the actual development time from the transitions recorded in the
change-log of the issues in the Jira repository.

Jira Workflow: In Jira projects, issues transition through stages
of work —from creation to completion— following a path. This path
is called workflow. Figure 1 shows a generic Jira workflow that
could be used to track issue transitions and calculate approximate
time spent on issue development.

The life cycle of an issue starts at the time of its creation (the
grey circle in the workflow). When the issue is considered to be
developed, its status changes into a To Do state (1). This is when
the issue gets assigned to a developer. When the developer starts
working on an issue, he/she changes its status to In-Progress (2).
The developer is given the option to stop working (3) and restart it
again (2) at any time.

3Common Software Measurement International Consortium
4Backlog is a breakdown of work containing an ordered list of user stories that an
Agile team maintains for a project.



On the Relationship Between Story Points and Development Effort in Agile Open-Source Software ESEM ’22, September 19–23, 2022, Helsinki, Finland

Resolved
TO DO

Start Working

Stop Working

Resolved

IN PROGRESS
Close

Set Resolution 
Automatically

Reopen

DONE

Reopen

Closed

RESOLVED

2

3

4

assigned

Created

1

5

7

8

6

Figure 1: A generic Jira workflow.

When the development is finished, the developer changes the
issue’s status to Done (4), and Jira automatically populates the
Resolution field (5). Also, the developer can set the Resolution
field any time during the life cycle of the issue. The Resolution
field can be populated with one of the several labels predefined
in the workflow (usually but not necessarily with statuses defined
within theDone category), e.g., Fixed, Completed, Closed, Delivered,
Invalid, Duplicate, Won’t Fix, Rejected, and Cancelled, depending
on the project and issue type.

Jira recognises an issue as Resolved if the Resolution field is pop-
ulated. By default Resolved means that the issue is in a closed state
and no more work is needed to be done. But in many workflows
Resolved is not an ultimate state. For instance, in a custom work-
flow, once the issue is resolved there might be an inspection which
decides if the solution provided is sufficient and/or correct —the
review process— before the issue can be closed (6). If the solution
is not accepted, the issue will then be reopened and it would need
to be addressed again (7). Ultimately, an issue might be reopened
after it has been closed (8), although this is rare.

Issue Development Time: The workflow is typically specific
to the work processes within an organization/team. Indeed, Jira pro-
vides organizations with the ability to create customised workflows
and statuses for each project and issue type. This makes it difficult
to create a general method to calculate the time by observing issue
transitions. However, a custom status defined in a custom workflow
has to belong to one of these three categories: To Do, In-Progress,
and Done. Jira mandates the use of these categories and employs
them internally to identify the column under which each issue
should be listed in the software task board. Therefore, one can base
the time calculation upon these three categories. Specifically, using
the status categories, one can identify the transitions of the issues
between the time they were set to be in progress, stopped progress,
or accomplished.

Based on the above workflow, we have defined the following
three proxies for issue development time.

In-Progress Time is defined as the duration in which an issue
has been in the “In-Progress” status. In most projects the “In-Progress”
status is used by developers to mark the time that they spend on

the implementation of an issue. Hence, In-Progress Time might not
include any time spent on testing, reviewing or discussion.5

Effort Time is defined as the duration in which an issue has been
in any of the statuses categorised as In-Progress. This definition can
be interpreted as amore realistic proxy for the effort since it includes
time spent for implementation, testing, reviewing, discussions, etc.,
as the Effort Time considers all the time that an issue spends under
any status from the In-Progress category.6

Resolution Time is defined as the duration required for an issue
to be resolved. As we can see in Figure 1, an issue status can be
set to Resolved at any point in its life cycle. This definition aims at
capturing the amount of time it takes for an issue to be resolved. To
this end, we consider the duration between the time an issue was
created until it is Resolved [48]. This is the definition used in the
literature to measure the time to fix an issue [23, 28, 41]. This proxy
slightly differs from the one used in the work of Choetkiertikul et
al. [10], as it also takes into account the time between the creation
of the issue and the first time it was set to an In-Progress status.
Whereas, the proxy used by Choetkiertikul et al. considers the
duration between the time an issue was first set to an In-Progress
status and the time that it was resolved.

3 EMPIRICAL STUDY DESIGN
In this section, we describe the research questions posed in our
study and the dataset, methods and statistical tests used to answer
these questions.

3.1 Research Questions
Story point, as a measure of effort, is expected to have a positive
correlation with the actual time needed to realise a software.

In this study we aim at investigating the correlation between
estimated story point and the actual effort. As, the actual effort is
rarely recorded in an issue report, we analysed three proxies for
the development time based on the Jira workflow as described in
Section 2.2. Therefore, our first research question assesses which
of these proxies are a good approximation of the actual effort.

RQ1. Approximating Issue Development Time: To what
extent can proxies be used to approximate the development time logged
by the developers?

Once we assess whether these proxies provide a satisfactory
approximation, we move to investigate the correlation between
story point and the actual effort (i.e., each of the three proxies
proposed):

RQ2. Correlation:What is the relationship between an issue’s
story point and its development time?

To answer this question we use three widely known correlation
statistics to verify the relationship between the SP and each of the
three proxies we used for approximating the development time (see
Section 2.2).

5Note that there is always a status named In-Progress within the In-Progress category,
teams can add other statuses into this category based on their issue ecosystem. For
instance, in a project which has In-Progress, Test, and Review statuses defined in the
In-Progress category, the issue may transition from one status to another until it passes
all the required stages before it is closed (i.e., set to Done). This is showed by a recursive
arrow for the In-Progress status in Figure 1.
6To identify the category of each status in each project, we queried the metadata of
each project’s repository by using the REST API provided by Jira [48].



ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

SP is a relative measure by definition, and the relativeness refers
to the amount of the work that one story point represents. It can
differ from project to project and from team to team. This rate (i.e.,
one story point ratio with respect to the amount of the effort in
person-hour) might be affected by aspects such as the experience
of the team, the programming language and the technology used
for development. This rate is used to compute the productivity
of the team and to make the story point scale specific to each
team. However, within a project, the estimation team should remain
consistent throughout the project with respect to the unit of work
that a story point represents. In other words, the amount of work
considered for a story point should be kept the same until the end
of the project and all the issues should be measured with that same
unit. Nevertheless, keeping this rate consistent is challenging for
any team. This phenomenon justifies the rationale for our third,
and last, research question, which emphasises on the variance of
the time for each SP:

RQ3. SP Consistency: How consistent is the assignment of story
point throughout a project?

To answer this question, we rely on a visual representation to
identify any deviation between the actual data and an ideal trajec-
tory of consistency in SP estimation, derived from the data itself as
further explained in Section 3.2.

3.2 Methodology
To answer RQ1, we compare the Timespent value with the time as
measured by each of the proxies for each issue, and compute the
absolute error one would commit had a proxy been used rather
than the actual value. Specifically, to measure the resemblance of
the three proxy measures to Timespent, we compute the Sum of
Absolute Errors (SAE) between each of the proxies and the Time-
spent for the issues contained in each project. SAE is computed as
follows: 𝑆𝐴𝐸 =

∑𝑛
𝑖=1 |𝑃𝑖 −𝑇𝑆𝑖 |, where 𝑛 is the number of issues in

the project with reported Timespent values, 𝑇𝑆𝑖 is the Timespent
value for issue 𝑖 , and 𝑃𝑖 is each of the values of the development
time proxies for issue 𝑖 , obtained from the TAWOS dataset [48].
The proxy with the minimum SAE is the most representative of the
Timespent. Then we apply statistical significance tests on the distri-
bution of each of the proxies against Timespent to verify whether
the difference between them is statistically significant. Specifically,
we used the Wilcoxon Rank-Sum test (a.k.a. Mann–Whitney U test)
[30] to check for statistical difference. The confidence limit is ini-
tially set to 𝛼 = 0.05 and is corrected for multiple hypotheses using
the standard Bonferroni correction (𝛼/𝐾 , where 𝐾 is the number
of hypotheses). To answer RQ1, we tested the following null hy-
pothesis: 𝐻0: The distribution of the Timespent is not different from
that of the proxy 𝑃𝑖 . For those cases where the null hypothesis is
rejected, the following alternative hypothesis is accepted: 𝐻1: The
distribution of the Timespent is different from that of the proxy 𝑃𝑖 . To
measure the effect size of the difference, we use Vargha Delaney’s
𝐴12 measure, which is a standardised non-parametric effect size
measurement, to assess how meaningful the difference between the
two distributions is [7]. According to the Vargha Delaney’s effect
size, if the two distributions are very similar𝐴12 = 0.5. Respectively,
an 𝐴12 closer to 1 means that the two distributions are not similar.
The effect size is considered small for 0.6 ≤ 𝐴12 < 0.7, medium for

0.7 ≤ 𝐴12 < 0.8, and large for 𝐴12 ≥ 0.8, although these thresholds
are not definitive [52].

To answer RQ2, we apply three correlation statistics to our data:
the Pearson 𝑟 correlation coefficient [32], the Spearman’s 𝜌 rank
correlation [45], and the Kendall’s 𝜏 rank correlation [27]. The Pear-
son correlation test measures the linear correlation between two
variables, while the Spearman’s and Kendall’s correlation tests are
statistics used to measure the ordinal association between two sam-
ples and assess howwell the relationship between two variables can
be described using a monotonic function [9]. Unlike the Pearson’s
𝑟 which considers the value of the data points, the Spearman’s 𝜌
and Kendall’s 𝜏 work with ranks of data points which makes them
less sensitive to strong outliers that lie in the tails of both samples
[13]. All three correlation statistics range from +1 to −1, where +1
indicates a perfect correlation and −1 indicates a perfect inverse
correlation. A non-correlation is indicated by a 0. Although both
Spearman’s 𝜌 and Kendall’s 𝜏 measure rank correlation, they cannot
be compared directly with one another since they have different
scales. Gilpin [22] describes the ratio of 𝜌 to 𝜏 to be almost 1.5 for
most of the range. The two get close to each other as their magni-
tude increases towards the limits (i.e., both approaching +1 or −1)
and when they both approach zero. We use the Cohen’s standard
[11, 25] for interpreting the correlation coefficients to determine the
strength of the relationship. Based on this, correlation coefficients
between 0.10 and 0.29 represent a small association, coefficients
between 0.30 and 0.49 represent a medium association, and coeffi-
cients equal to or greater than 0.50 represent a large association.
To perform the correlation we used the cor.testmethod available
in R version 4.0.1. Both the Spearman’s and Kendall’s correlation
statistic implementations used in this study can handle ties in the
data points.

To answer RQ3, we group all the issues that have been assigned
a same story point of value <X> (i.e., story point <class X>) in a
same class. Then we analyse the boxplots of the time spent on each
issue for the distinct classes to understand if the distribution of
time in story point classes is a normal one, which would indicate
a normal distribution of the error for story point estimation in
each class. To investigate consistency, we observe the median point
in the distribution of development time per SP class. We use the
median point as it is not affected by the extreme values. For a
project with inconsistent SP estimations, the median development
time will be affected (misplaced from ideal trajectory) due to many
miss-classifications of smaller or bigger tasks in a specific SP class;
or from another point of view, issues estimated to have the same SP
do not agree on the same (or similar) development time. In an ideal
scenario, the median of the distribution of the development time in
story point classes should have a linear relationship with the value
of the story point. For instance, the median of the development
time for issues assigned with story point five should be five times
larger than the median of the development time for issues assigned
with story point one. Should this linear relationship hold for all
of the issues in story point classes, we can assert that story point
estimations are consistent throughout a project. To test this we
show the trajectory of this linear relation to visualise the degree of
the consistency.



On the Relationship Between Story Points and Development Effort in Agile Open-Source Software ESEM ’22, September 19–23, 2022, Helsinki, Finland

3.3 Dataset
We sample data from the TAWOS dataset version 1.0 [48], which is
a collection of diverse open-source Agilesoftware projects. These
projects have been mined from several different repositories main-
tained using Jira Issue Tracking System (ITS) [1]. The TAWOS
dataset is publicly available in the form of a relational database
and contains more than half a million issues from 44 projects. We
used SQL queries to sample issues from this database7. Below we
describe in detail, how we sample the set of projects investigated
in this study.

To answer our first research question (i.e., RQ1), we analyse
those projects from the TAWOS dataset that have recorded the
actual development time in the Timesent field of Jira. Hence, we
selected all the issues that are resolved (i.e., we filter out all those
that are not addressed), and have the Timespent field populated.
Then, we removed all issues having a Timespent value lower than
two minutes as done in previous work [57], to reduce noise in the
data. After applying such a filtering, we retained all those projects
with at least 100 issues each. This resulted in a sample of 9,806
issues from 15 projects. Descriptive statistics of this set, which is
used to answer RQ1, are provided in Table 1a.

As most of the issues recorded either one of the Timespent or SP,
in order to answer RQ2 and RQ3 we also sampled another set of
issues.8 To this end we filtered out from the TAWOS data all those is-
sues that are not addressed, and those that have been assigned with
SP less than 1 and greater than 100, as done in previous work [10], to
reduce the presence of data that is not relevant to the purpose of our
empirical study. Moreover, we noticed that a considerable number
of the issues in some of the projects have a proxy time equal to zero.
After a careful manual inspection, we found that there are issues
which never transitioned to an In-Progress status and thus they had
been closed immediately after being created or opened. These cases
may correspond to issues where developers had already worked on
the issue before tracking the corresponding record in Jira created
for the mere purpose of recording issues. In order to reduce the bias
introduced by these cases, and in accordance with the filter used for
RQ1, we removed all the issues with In-Progress time less than two
minutes, which corresponded to a total of 34.47% of the issues sam-
pled from the TAWOS dataset. Furthermore, we filtered out issues
with outlying values of In-Progress time to minimise the effect of
extreme values in our results.9 We therefore retained projects with
at least 100 issues after filtering out unwanted ones, which left us
with 58.33% of the initially sampled data corresponding to a total
of 28, 608 issues from 32 projects (equal to 44.11% of all the issues
with recorded SP in 32 projects under investigation). To identify the
outliers, we used the Interquartile Range (IQR). The IQR, which is
equal to the difference between the 75𝑡ℎ and 25𝑡ℎ percentiles of the
distribution of the data points, is multiplied by 1.5 and the resulting
value is subtracted from and added to the first and third quartiles,
respectively, to get the lower and upper fences (a.k.a. Tukey fences).
7The queries used to sample the data are publicly available in our online appendix
[51].
8Since RQ1 aimed at examining the approximation of the three proxies to the recorded
Timespent values, and there, the analysis is independent from the SP values, therefore,
we can use a different sample for RQ2 and RQ3 without loss of generality.
9Note that we did not filter out issues with regards to their development time proxy val-
ues from the sample used in RQ1, since the aim of RQ1 is to examine the approximation
of the proxies to the recorded Timespent values.

The data points falling outside the lower and upper fences are con-
sidered outliers and, hence, removed from the dataset. The resulting
data has been used to answer RQ2 and RQ3. Descriptive statistics
of this sampled dataset can be found in Table 1b. Note that a total
of 621 issues from the open-source data sampled for RQ1 are also
in the sample used for RQ2 and RQ3. Therefore, the total number
of unique user stories sampled from the TAWOS dataset is equal to
37,440 extracted from 37 different open-source projects.

3.4 Threats to Validity
To mitigate construct validity threats we use data from real-world
projects, which have been carefully curated and used in previous
work [48–50]. The story point values are predicted by human-
experts and recorded in the Jira issue repository. However, the
values we use as the actual time are extracted from the issue
change-log, based on the issue transitions recorded in the reposi-
tory throughout the development process. We are aware that these
time-values might not accurately represent the actual effort spent
on developing an issue, and we mitigated this threat by considering
three different approximations (i.e., In-Progress time, Effort time,
and Resolution time), each capturing different aspects of the actual
effort. We also used the actual development time recorded for issues
to investigate the extent to which these proxies resemble the actual
development time. Data points which are likely to be noisy, such as
issues that have not been fully resolved or issues with less than 2
minutes of recorded development time, were filtered out from the
dataset before any analysis, as described in Section 3.3.

Using proxies of the development time instead of the actual
time might also be a threat to the internal validity of this study.
In other words, the low correlation between SP and the proxies
might be because of an unrepresentative proxy and not the expert
misestimation. We mitigate this threat by conducting the same
correlation analysis with the actual development time recorded by
the developers where this was available.

With regard to the conclusion validity, we used three well-known
correlation statistics and reported the corresponding p-value. To
investigate the similarity of the proxies to the actual development
time, we used the Sum of Absolute Errors and examined the statisti-
cal difference between the absolute error distributions by applying
theWilcoxon Rank-Sum test with all required assumptions checked,
following best practice for effort estimation studies [42].

To mitigate external validity threats we used a large set of 37
projects which differ in size, application domain, programming
language, and development team. Although we used such a diverse
dataset, all the projects are open-source and the results might not
be generalizable to other contexts.

4 EMPIRICAL STUDY RESULTS
This section presents the results we have obtained in answering
the research questions described in Section 3.1.

4.1 RQ1. Approximating Issue Development
Time

Table 2 shows the SAE values computed for the three proxies with
respect to the Timespent value. We can observe that, among the
three proxies under study, In-Progress Time has the smallest error



ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

Table 1: List of projects we analysed for RQ1 (a) and RQs 2-3 (b). The total number of issues in each project is shown in the
Total Issues column. Before Filter shows the original number of issues extracted from the TAWOS dataset [48] and After Filter
shows the number of issues remaining after the filtering process as explained in Section 3.3. The other columns show summary
statistics for SP, Timespent and its proxies.

(a)

Repository Project Key Total Issues Issues with Timespent Timespent (minutes) In-Progress Time (minutes) Effort Time (minutes) Resolution Time (minutes)

Before Filter After Filter Min Max Mean Median SD Min Max Mean Median SD Min Max Mean Median SD Min Max Mean Median SD
Crowd CWD 4,311 222 220 2 4,800 468.36 240 729.33 0 1,401,053 13,258.70 44.5 101,509.06 0 1,401,053 17,341.50 2,122.5 102,618.99 7 2,724,297 185,866.38 20,465.5 436,488.49
Jira Software Cloud JSWCLOUD 11,702 255 244 30 2,220 383.70 300 368.79 0 219,603 2,873.85 118.5 14,352.33 0 220,762 2,878.60 118.5 14,424.37 0 1,968,722 52,691.43 5,750 253,296.60
Jira Software Server JSWSERVER 12,862 262 257 30 3,600 394.01 180 535.28 0 192,687 4,030.39 0 17,679.50 0 192,687 4,030.39 0 17,679.50 0 1,434,770 46,633.84 5,998 127,654.65
Jira Server JRASERVER 44,165 990 981 5 24,622 298.01 120 941.64 0 216,201 2,167.55 0 12,139.01 0 248,570 3,345.93 0 18,248.28 0 4,387,661 145,363.86 11,644 416,982.46
Bamboo BAM 14,252 524 521 5 8,460 392.57 240 694.73 0 2,278,726 11,284.45 288 103,415.46 0 455,765 12,845.10 4,253 30,649.89 1 2,635,279 78,653.98 20,072 222,346.01
Clover CLOV 1,501 106 106 2 4,801 605.87 240 906.33 0 259,569 15,619.25 191.5 42,533.41 0 260,743 21,726.25 7,364.5 43,420.66 0 1,350,621 85,252.67 30,289.5 171,444.39

Atlassian

FishEye FE 5,533 634 612 2 8,782 265.36 112 638.94 0 4,771,423 14,706.04 94.5 195,220.17 0 4,771,423 38,411.01 11,178.5 257,383.61 6 4,797,823 167,097.20 34,210 536,889.66
Appcelerator Titanium Mobile Platform TIDOC 3,059 714 711 5 11,040 307.01 120 626.55 0 579,203 7,839.01 276 32,121.50 0 579,203 10,971.92 1,399 38,699.95 0 2,463,988 131,868.77 25,699 303,406.05
Lsstcorp Data management DM 26,506 191 190 5 24,000 934.08 480 1,847.11 0 1,695,993 29,921.76 1,445 145,880.95 0 1,849,990 54,467.54 8,724.5 222,795.99 0 1,850,092 72,405.15 19,166.5 223,627.89
Sonatype Nexus NEXUS 9,912 1,356 1,348 2 4,560 189.26 90 327.95 0 495,244 2,310.59 0 21,501.77 0 495,244 2,370.53 0 21,529.01 0 5,068,853 42,930.46 4,658 202,515.39

Talend Data Quality TDQ 15,315 2,054 2,053 10 18,960 764.44 480 1,144.12 0 165,637 5,119.09 1,174 11,622.38 0 916,623 42,361.35 11,562 94,348.85 1 4,002,454 179,687.61 42,085 438,753.36
Talend Data Preparation TDP 5,670 219 193 10 6,660 723.85 300 1,027.93 0 137,132 7,632.41 1,604 15,791.27 0 162,678 25,879.64 16,936 29,052.18 1 903,339 106,585.19 60,215 141,153.18
Talend Data Management TMDM 9,137 1,650 1,648 3 5,760 541.33 360 625.69 0 1,031,320 5,019.47 1,459.5 27,701.47 0 1,231,065 43,492.23 19,125 87,717.66 0 2,902,016 98,187.55 27,414 228,291.61
Talend Big Data TBD 4,624 193 191 5 5,700 712.36 360 943.00 0 152,267 4,539.72 1,131 12,736.24 0 1,751,027 103,679.79 56,685 192,330.37 263 1,751,054 119,209.97 53,074 227,411.31

Talendforge

Talend Enterprise Service Bus TESB 15,985 436 178 60 2,760 268.66 180 289.30 0 2,391,610 16,848.47 1,472 179,097.87 0 2,391,610 31,680.99 1,490 241,500.85 0 2,480,801 25,164.78 5,380.5 186,888.34
Total 184,534 9,806 9,453

(b)

Repository Project Key Total Issues # Issues with SP Story Point In-Progress Time (minutes)

Before Filter After Filter Min Max Mean Median StD Min Max Mean Median StD
Jira Software Cloud JSWCLOUD 11,702 318 185 1 20 4.19 3 3.58 2 21,931 5,212.30 2,945 5,267.85
Confluence Server CONFSERVER 42,324 662 362 1 13 3.03 3 1.73 2 24,847 4,511.35 1,559.5 5,922.60
Jira Software Server JSWSERVER 12,862 351 208 1 20 4.19 3 3.51 2 18,864 4,696.80 2,831 4,749.70
Bamboo BAM 14,252 528 302 1 20 2.47 2 2.18 2 20,524 4,104.67 1,455.5 5,048.14

Atlassian

Clover CLOV 1,501 387 146 1 20 3.48 2 4.09 2 30,293 5,700.54 2,848 6,655.53
Mesos MESOS 10,157 3,272 1,157 1 13 3.32 3 2.08 2 39,861 6,311.93 1,616 8,922.99Apache Usergrid USERGRID 1,339 487 162 1 8 2.62 3 1.41 2 21,657 4,905.17 2,950.5 4,898.76
Titanium Mobile Platform TIDOC 3,059 1,297 628 1 40 4.28 3 4.14 2 46,257 6,771.88 1,553 10,171.09
Aptana Studio APSTUD 8,135 890 302 1 40 7.92 8 5.13 3 6,915 1,222.96 340 1,618.00
Appcelerator Studio TISTUD 5,979 3,406 1,918 1 34 5.69 5 4.14 2 5,243 817.76 182 1,159.13
The Titanium SDK TIMOB 22,059 4,665 1,753 1 21 5.56 5 2.70 2 14,255 1,927.80 240.5 3,137.66

Appcelerator

Appcelerator Daemon DAEMON 313 242 131 1 99 9.57 8 11.03 2 26,184 3,403.00 379 6,141.23
DNN Tracker DotNetNuke Platform DNN 10,060 2,594 1,122 1 14 2.18 2 1.46 2 9,553 1,371.70 199 2,268.66

Blockchain Explorer BE 802 373 239 1 13 3.01 3 1.77 2 33,120 8,387.12 5,754 8,061.10
Fabric FAB 13,682 636 235 1 24 2.85 2 2.71 2 64,394 11,464.59 7,021 13,734.58
Indy Node INDY 2,321 681 438 1 13 3.21 3 1.73 2 38,453 9,357.24 7,190.5 8,693.04
Sawtooth STL 1,663 966 646 1 8 2.38 2 1.30 2 40,392 11,375.65 8,799 9,660.83

Hyperledger

Indy SDK IS 1,531 720 418 1 13 3.91 3 2.13 2 22,384 4,986.39 2,917 5,339.56
Lsstcorp Lsstcorp Data management DM 26,506 20,664 9,019 1 100 6.16 3.2 9.58 2 105,126 18,290.56 8,083 24,287.98
Lyrasis Lyrasis Dura Cloud DURACLOUD 1,125 666 243 1 13 2.05 2 1.55 2 24,555 4,253.40 1,363 5,881.14

Compass COMPASS 1,791 499 275 1 8 3.43 3 1.73 3 50,363 10,583.59 4,351 13,403.21
C++ driver CXX 2,032 224 105 1 4 1.35 1 0.65 2 14,917 2,458.21 1,098 3,587.64
MongoDB Core Server SERVER 48,663 784 418 1 42 2.53 2 2.76 2 18,577 3,081.26 1,056 4,419.22MongoDB

Evergreen EVG 10,299 5,402 1,674 1 8 1.94 2 1.10 2 10,949 2,116.95 1,155 2,742.38
Mule MULE 11,816 4,170 2,105 1 21 4.95 4 3.52 2 22,982 5,195.96 3,179 5,394.67Mulesoft Mule APIkit APIKIT 886 473 284 1 13 3.14 3 2.30 2 17,755 3,522.79 1,640 4,242.36

Sonatype Nexus NEXUS 9,912 1,845 421 1 15 1.56 1 1.22 2 11,467 2,054.11 518 2,811.87
Spring XD XD 3,707 3,705 1,602 1 24 3.37 3 2.48 2 20,942 4,160.57 1,680.5 5,038.44

Talend Data Quality TDQ 15,315 1,843 1,151 1 40 5.20 5 4.28 2 27,457 6,161.18 3,945 6,663.57
Talend Data Preparation TDP 5,670 813 473 1 18 2.24 2 1.72 2 48,922 10,373.10 7,181 11,139.64
Talend Data Management TMDM 9,137 297 177 1 8 2.42 2 1.60 3 20,046 4,795.11 2,996 4,781.31Talendforge

Talend Enterprise Service Bus TESB 15,985 1,000 309 1 13 2.28 2 1.51 2 47,937 11,166.68 8,370 11,427.15
Total 326,585 64,860 28,608

for all projects. However, while this indicates that In-Progress Time
is the most representative of Timespent, the magnitude of the abso-
lute errors shows that all three proxies have large differences with
Timespent. This is due to the fact that the Timespent field, which
stores the aggregated amount of time spent on the development
of the issue, is computed as the sum of the work hours logged by
the developers on the issue. The proxies obtained from the TAWOS
dataset are the aggregation of the duration between points in the
timeline for an issue’s status change, so they take into account the
idle time that a developer might pause working but not change
the status. For example, if an issue’s status remains unchanged for
a week but a developer works five hours a day on the task, they
may log 25 hours for Timespent, while the proxies would take into

account the number of days (in progress, or to resolution) in order
to measure development time. Hence, the proxy may be multiple
times greater than the actual Timespent. However, this difference
in magnitude does not affect the correlation results.

Overall, considering all limitations of getting a close approxima-
tion of the actual effort in open source projects, these proxies are
the most representative we could obtain from the data.

In order to verify whether the differences between Timespent
and each of the three proxies are statistically significant, we revert
to the Wilcoxon test. The results of this test are presented in Table
2 (last three columns). Since we are interested in any difference be-
tween each pair of distribution sets, we use a two-sided alternative
hypothesis, therefore a comparison of 𝑃𝑖 vs. 𝑃 𝑗 results in the same



On the Relationship Between Story Points and Development Effort in Agile Open-Source Software ESEM ’22, September 19–23, 2022, Helsinki, Finland

Table 2: RQ1. Difference between Timespent and the three proxy measures for development time (i.e., In-Progress Time, Effort
Time, and Resolution Time) in terms of SumAbsolute Error (SAE) and significance statistical tests (effect size shown in brackets).

Project SAE with Timespent Timespent vs.

In-Progress Time Effort Time Resolution Time In-Progress Time Effort Time Resolution Time

CWD 2,909,699 3,796,762 40,790,437 <0.001 (0.40) <0.001 (0.60) <0.001 (0.95)
JSWCLOUD 666,291 667,450 12,776,147 0.285 (0.47) 0.285 (0.47) <0.001 (0.80)
JSWSERVER 1,024,283 1,024,283 11,903,893 <0.001 (0.23) <0.001 (0.23) <0.001 (0.72)
JRASERVER 2,230,661 3,389,772 142,334,494 <0.001 (0.26) <0.001 (0.25) <0.001 (0.92)
BAM 5,784,351 6,565,644 40,777,437 0.361 (0.52) <0.001 (0.68) <0.001 (0.96)
CLOV 1,641,549 2,261,458 8,973,869 0.872 (0.49) <0.001 (0.67) <0.001 (0.93)
FE 8,961,125 23,375,131 102,102,251 0.968 (0.50) <0.001 (0.86) <0.001 (0.99)
TIDOC 5,501,120 7,703,434 93,548,470 0.085 (0.53) <0.001 (0.61) <0.001 (0.96)
DM 5,578,740 10,194,085 13,588,070 0.043 (0.56) <0.001 (0.77) <0.001 (0.91)
NEXUS 3,114,794 3,193,031 57,646,533 <0.001 (0.31) <0.001 (0.32) <0.001 (0.85)
TDQ 9,568,980 85,743,427 367,355,182 <0.001 (0.54) <0.001 (0.82) <0.001 (0.96)
TDP 1,358,593 4,863,758 20,432,471 <0.001 (0.67) <0.001 (0.91) <0.001 (0.98)
TMDM 7,521,187 70,814,422 160,926,609 <0.001 (0.65) <0.001 (0.92) <0.001 (0.96)
TBD 784,328 19,667,618 22,633,044 0.020 (0.57) <0.001 (0.99) <0.001 (0.99)
TESB 2,963,686 5,602,799 4,438,478 <0.001 (0.70) <0.001 (0.72) <0.001 (0.80)

p-value as the comparison of 𝑃 𝑗 vs. 𝑃𝑖 . As revealed by the results,
the difference in the distributions of Timespent and In-Progress is
significant in eight out of 15 projects, all with small or negligible
effect size, except for the TESB project for which the effect size is
medium. However, the difference between Timespent and the Effort
time proxy is significant in 14 out of 15 cases, with JSWCLOUD
being the only exception given that the recorded Effort time is very
close to In-Progress time in most of the issues belonging to this
project. Moreover, the difference is significant for all the cases when
comparing Timespent with the Resolution time. Out of 30 cases of
statistical tests on Effort Time and Resolution Time, 19 cases show
a large effect size, three cases a medium effect size, and 7 cases a
small or negligible effect size.

As a result, we only consider In-Progress in our subsequent
research questions given that it is the most representative of Time-
spent compared to the other two proxies.

4.2 RQ2. Correlation
The results of three correlation statistics (RQ2) are shown in Table 3.
We also reported the p-value for each correlation coefficient.

For all projects, Kendall’s 𝜏 is consistent with the Spearman’s 𝜌
in the scale and confidence level. However, if we consider Gilpin’s 𝜏
to 𝜌 conversion table [22], we would expect a higher 𝜌 . For example,
in the case of the CONFSERVER project (see Table 3), Gilpin’s table
maps a 𝜏 = 0.26 to 𝜌 = 0.38, while our data lead to a 𝜌 = 0.34. The
rationale behind this is the fact that Kendall’s 𝜏 is the proportion of
the concordant to discordant pairs while the Spearman’s 𝜌 considers
the variance in the ranks. Hence, as we obtain a 𝜌 smaller than
expected (indicated by 𝜌 to 𝜏 rate) it shows the high variance in
the ranks of the data, to which Spearman is sensitive but Kendall is
not. This high variance in the ranks is a sign of misclassification
of many issues by human-estimators in wrong SP classes, thus an
error in the estimation.

The Pearson correlation coefficient is lower than the Spearman’s
𝜌 for 24 projects (75% of the cases), which indicates that the relation
between the story point and development time is not usually linear.

As we can observe, the correlation denoted by Spearman’s 𝜌 for
In-Progress time is low in six out of 32 cases, medium in 21 cases and
strong for only five cases. The strongest positive correlation appears

Table 3: RQ2. Correlation results between SP and In-Progress
Time (p-value in brackets). Medium and strong correlations
are highlighted in orange and red , respectively.

Project In-Progress Time Correlation with Story Point

Spearman’s 𝜌 Kendall’s 𝜏 Pearson 𝑟

JSWCLOUD 0.54 (<0.001) 0.41 (<0.001) 0.47 (<0.001)
CONFSERVER 0.34 (<0.001) 0.26 (<0.001) 0.26 (<0.001)
JSWSERVER 0.53 (<0.001) 0.40 (<0.001) 0.49 (<0.001)
BAM 0.35 (<0.001) 0.28 (<0.001) 0.35 (<0.001)
CLOV 0.45 (<0.001) 0.34 (<0.001) 0.44 (<0.001)
MESOS 0.40 (<0.001) 0.30 (<0.001) 0.35 (<0.001)
USERGRID 0.20 (0.013) 0.16 (0.008) 0.12 (0.139)
TIDOC 0.48 (<0.001) 0.36 (<0.001) 0.27 (<0.001)
APSTUD 0.38 (<0.001) 0.30 (<0.001) 0.40 (<0.001)
TISTUD 0.42 (<0.001) 0.33 (<0.001) 0.35 (<0.001)
TIMOB 0.28 (<0.001) 0.22 (<0.001) 0.23 (<0.001)
DAEMON 0.62 (<0.001) 0.48 (<0.001) 0.66 (<0.001)
DNN 0.32 (<0.001) 0.25 (<0.001) 0.27 (<0.001)
BE 0.19 (0.003) 0.15 (0.002) 0.21 (0.001)
FAB 0.49 (<0.001) 0.38 (<0.001) 0.36 (<0.001)
INDY 0.56 (<0.001) 0.44 (<0.001) 0.53 (<0.001)
STL 0.41 (<0.001) 0.32 (<0.001) 0.39 (<0.001)
IS 0.49 (<0.001) 0.38 (<0.001) 0.43 (<0.001)
DM 0.49 (<0.001) 0.36 (<0.001) 0.42 (<0.001)
DURACLOUD 0.52 (<0.001) 0.41 (<0.001) 0.47 (<0.001)
COMPASS 0.30 (<0.001) 0.23 (<0.001) 0.25 (<0.001)
CXX 0.27 (0.005) 0.22 (0.006) 0.36 (<0.001)
SERVER 0.49 (<0.001) 0.37 (<0.001) 0.29 (<0.001)
EVG 0.36 (<0.001) 0.28 (<0.001) 0.28 (<0.001)
MULE 0.48 (<0.001) 0.36 (<0.001) 0.49 (<0.001)
APIKIT 0.37 (<0.001) 0.28 (<0.001) 0.30 (<0.001)
NEXUS 0.25 (<0.001) 0.19 (<0.001) 0.25 (<0.001)
XD 0.41 (<0.001) 0.31 (<0.001) 0.38 (<0.001)
TDQ 0.44 (<0.001) 0.32 (<0.001) 0.36 (<0.001)
TDP 0.36 (<0.001) 0.27 (<0.001) 0.23 (<0.001)
TMDM 0.18 (0.016) 0.14 (0.015) 0.23 (0.002)
TESB 0.33 (<0.001) 0.26 (<0.001) 0.24 (<0.001)

Min 0.18 0.14 0.12
Max 0.62 0.48 0.66
Mean 0.40 0.31 0.35
SD 0.11 0.08 0.11

to be in projects DAEMON, INDY, JSWCLOUD, JSWSERVER, and
DURACLOUD. Looking at the p-value of the Spearman’s 𝜌 , we find
that the confidence level is above 99% for 30 out of the 32 projects
under study (94% of the cases).



ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

Table 4: RQ2. Correlation results between SP and Timespent
(p-value in brackets). Medium and strong correlations are
highlighted in orange and red , respectively.

Project Timespent Correlation with Story Point

Spearman’s 𝜌 Kendall’s 𝜏 Pearson 𝑟

DM 0.33 (<0.001) 0.28 (<0.001) 0.35 (<0.001)
MDL 0.34 (<0.001) 0.27 (<0.001) 0.11 (0.179)
TDQ 0.64 (<0.001) 0.52 (<0.001) 0.61 (<0.001)
TMDM 0.03 (0.729) 0.03 (0.688) 0.28 (0.004)

As a subsequent analysis we computed the three correlation
statistics on all the issues from the TAWOS dataset that have re-
ported both the SP and Timespent values. This results in a total
of 697 issues from four projects (specifically, 128 issues from DM,
303 issues from TDQ, 104 issues from TMDM, and 162 issues from
MDL). Although the number of such issues is not prevalent, it gives
us an indication of how much results of RQ2 can be resembled by
actual development time values (i.e., Timespent).

The result of this correlation analysis is shown in Table 4. As we
can see, only one out of four projects showed a strong correlation
with respect to all three statistics. From the other three projects,
two show a medium range Spearman’s 𝜌 and one a medium range
Pearson’s 𝑟 coefficient. For the rest of the cases (i.e., 50%) a low
correlation is obtained between SP values and actual Timespent.

4.3 RQ3. Consistency
Figure 2 shows the boxplots of the development time distribution
for each story point value for six sample projects.10. As previously
explained (Section 3.2), for an acceptable story point estimation
error, each of these boxplots should resemble a normal distribution,
and the relation between the median of each box should be propor-
tional to the value of the story point class. The ideal projection of
median development time per each SP class is depicted by a line
connecting the diamonds in Figure 2. This projection is computed
by multiplying the SP value with the median development time for
all issues estimated to have one story point.

From the boxplots, we can observe that this proportion does not
hold for most of the classes. Besides, the distribution of each class
tends to be heavily tailed. This observation is confirmed by the
Shapiro-Wilk test [36], which has revealed that the data is not nor-
mally distributed for any of the projects [51]. Specifically, only for
seven projects out of the 32 under study, the median development
time per SP class (depicted by median line inside each boxplot)
falls in the vicinity of the ideal projected value (for example see
projects CLOV and JSWCLOUD in Figure 2). For four other projects,
the projection line falls well above the actual median development
time (e.g., the BE project in Figure 2), indicating an over-estimation.
While for the remaining 21 projects, the projection line falls well be-
low the actual median development time (e.g., the APIKIT, XD and
MULE projects in Figure 2). This high number shows the tendency
for human-experts to generally underestimate the time required to
complete a certain task.

We further analyse this phenomenon by fitting a regression line
to the median development time of each class against the value of
10Due to space, the boxplots for all projects can be found in our on-line appendix [51].

Table 5: RQ3. Angles created between theX axis and the linear
regression fit for SP classes against Median In-Progress time
when only SP classes ≤ 5 are considered (Angle (SP≤ 5)) and
when all the classes are considered (Angle (SP≤ 100)), and the
angle between the two (Difference).

Project Angle (SP≤ 5) Angle (SP≤ 100) Difference

JSWCLOUD 40.41◦ 24.22◦ 16.19◦

CONFSERVER 48.35◦ 20.77◦ 27.58◦

JSWSERVER 41.12◦ 24.48◦ 16.64◦

BAM 57.40◦ 21.57◦ 35.83◦

CLOV 57.51◦ 22.65◦ 34.86◦

MESOS 54.04◦ 39.22◦ 14.82◦

USERGRID 26.17◦ 38.78◦ 12.61◦

TIDOC 23.57◦ 23.73◦ 0.16◦
APSTUD -4.67◦ 5.71◦ 10.38◦
TISTUD 0.72◦ 7.78◦ 7.06◦
TIMOB 1.45◦ 6.79◦ 5.34◦
DAEMON 1.40◦ 11.14◦ 9.74◦
DNN 26.08◦ 7.92◦ 18.16◦

BE 48.00◦ 45.96◦ 2.04◦
FAB 78.33◦ 19.39◦ 58.94◦

INDY 66.94◦ 63.87◦ 3.07◦
STL 65.47◦ 54.82◦ 10.65◦
IS 46.96◦ 25.49◦ 21.47◦

DM 75.48◦ 26.95◦ 48.53◦

DURACLOUD 56.49◦ 46.08◦ 10.41◦
COMPASS 47.02◦ 59.73◦ 12.71◦

CXX 64.53◦ 64.53◦ 0.00◦
SERVER 30.39◦ 7.43◦ 22.96◦

EVG 36.15◦ 24.12◦ 12.03◦
MULE 29.20◦ 31.42◦ 2.22◦
APIKIT 19.81◦ 20.73◦ 0.92◦
NEXUS 17.80◦ 23.40◦ 5.60◦
XD 31.91◦ 17.83◦ 14.08◦

TDQ 50.19◦ 11.11◦ 39.08◦

TDP 63.45◦ -0.90◦ 64.35◦

TMDM 32.77◦ 37.86◦ 5.09◦
TESB 69.70◦ 7.97◦ 61.73◦

the story point. We then fit another regression line considering only
the classes of SP with values less than five. As the angle between
these two lines widens, the consistency between story point classes
becomes lower. In contrast, if these two lines are aligned together
for a project, we can say that the consistency of estimation in lower
SP classes is maintained for higher SP classes. This is based on the
premise that human experts are better at estimating smaller tasks
than the bigger ones. Plots of the regression fits for all projects can
be found in our online appendix [51].

We also report, in Table 5, the angles each of these lines cre-
ates with the x-axis as well as the deviation in the trajectory (i.e.,
difference between the two angles).

We can observe that the angle between the two lines is wider than
12.5◦ for more than half the projects (53% of the cases). This signifies
that there is a notable shift in the trajectory of the regression fit of
those projects taking into account the median development time
for the higher SP classes. Thus, the scale in which the issues in the
higher SP classes are estimated is not consistent with the issues
estimated to be in the smaller SP classes. Therefore, based on these
observations, we recommend that development teams consider
breaking down bigger issues into smaller ones before they attempt
to estimate the story point.

It is also worth noting that using data consisting of estimated
SP to train a predictive model, would result in that model imitating
human expert misestimates and therefore possibly achieving biased
results.



On the Relationship Between Story Points and Development Effort in Agile Open-Source Software ESEM ’22, September 19–23, 2022, Helsinki, Finland

0

100

200

300

1 2 3 4 5 8 13
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

APIKIT

(a) APIKIT

0

250

500

750

1000

1 2 3 4 5 7 8 11 13
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

BE

(b) BE

0

200

400

600

1 2 3 4 5 8 13 20
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

CLOV

(c) CLOV

0

100

200

300

1 2 3 4 5 6 7 8 10 13 14 15 16 20 24
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

XD

(d) XD

0

100

200

300

400

1 2 3 5 8 13 20
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

JSWCLOUD

(e) JSWCLOUD

0

100

200

300

400

1 2 3 4 5 8 10 13 16 21
Story Point

In
 P

ro
gr

es
s 

T
im

e 
(h

ou
rs

)

MULE

(f) MULE

Figure 2: Boxplots of the distribution of development time per SP class for (a) APIKIT, (b) BE, (c) CLOV, (d) XD, (e) JSWCLOUD,
(f) MULE. The red line depicts a project-specific baseline, drawn based on the median development time for one SP.

5 RELATEDWORK
In this section, we discuss previous studies relevant to ours that
(1) analyse the relationship between human-expert estimated SP,
functional size measure (such as FP and COSMIC) and development
time/effort; (2) use human-expert estimated SP as a cost driver for
automated Agile software effort estimation models; (3) use machine
learning models to predict the SP of user stories.

5.1 Software Size Measures and Agile
Development Effort

The first study assessing the relationship between SP and functional
size measures (FSM) was carried out in 2011 by Santana et al. [38].
The authors of this study quantitatively analysed the relationship
between FP and SP in a case study involving 2,191 user stories from
18 iterations of an Agile software projects developed by a private
company. They found a strong positive correlation between SP and
FP (Spearman’s 𝜌 = 0.71). Subsequently, Huijgens and Solingen
[26] replicated Santana et al.’s work on a different case study and
found a contrasting result. They gathered data from 14 iterations
performed by two teams (A and B) in a Dutch banking organization
that recorded estimations in SP, and computed the size in FP for all
iterations. The results of the Spearman’s rank correlation revealed
a medium (−0.36) and strong (−0.60) negative correlation between
SP and FP for Teams A and B, respectively.

SP has been also compared to COSMIC, and actual effort.
Salmanoglu et al. [37] compared the correlation of SP and CFP
with the actual effort spent for Agile software development. They

carried out three case studies from three large Turkish companies
producing software solutions for security, financial, and telecommu-
nication industries, reporting CFP, SP and the actual effort measured
in person-hours. They plotted SP and CFP values against the actual
effort to measure the linearity of functional size and actual effort,
and observed a stronger correlation between CFP and actual effort,
in comparison with SP.

Choetkiertikul et al. [10] carried out a preliminary analysis on
the relationship between SP and development time on a set of 16
open-source projects mined form Jira repositories for a total of
23,313 issues [10]. The main aim of their study, however, was to
build a machine learning model to estimate SP. They computed
development time from the issue changelog by considering the
duration between the time the issue’s status was set to In-Progress
and the time it was set to Resolved. This was regarded by the authors
as the most representative proxy for the actual effort they were
able to extract from the data with respect to the completion time
of an issue. However, this definition also includes the waiting time
between development stages as part of the development time. In
this paper, we adopt a similar proxy for the issue resolution time,
and use two additional proxies for development time to take into
account the waiting time (which is usually considered part of the
development time) as proposed by Tawosi et al. [48]. Choetkiertikul
et al. [10] found a positive correlation between the SP and their
proxy for development time with a mean of 0.47 and 0.51 and a
standard deviation of 0.19 and 0.18, according to the Spearman’s
rank and Pearson correlation, respectively. Our investigation on a
larger dataset showed a positive but weaker correlation than the one



ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

previously found [10], specially based on the Pearson correlation
coefficient. Across the 32 projects investigated herein, we obtained
a mean value of 0.40 for the Spearman’s 𝜌 and 0.35 for the Pearson’s
𝑟 coefficient, with a standard deviation of 0.11 for both.

5.2 Automated Story Point Prediction
Several studies in the literature have used automated estimation
techniques to predict SP of issues in Agile software projects. Abra-
hamsson et al. [3] used several features extracted from user stories,
including their SP, to train a model which estimates SP for new
stories. Porru et al. [34] built classification models to classify user
stories into SP classes. Scott and Pfahl [40] used developer-related
features alongside the features extracted from user stories to es-
timate SP using machine learning. Soares [43] used Autoencoder
Neural Networks to classify user stories based on the semantic dif-
ferences of their titles in order to estimate their SP size. Choetkier-
tikul et al. [10] combined two deep learning architectures, to build
an end-to-end prediction system for SP size of user stories, called
Deep-SE. Abadeer and Sabetzadeh [2] used Deep-SE [10] for SP
prediction of a closed-source project with 4,727 user stories. Tawosi
et al. [50] replicated Choetkiertikul et al.’s study [10] by evaluating
Deep-SE on a larger dataset of open-source projects. In another
study, Tawosi et al. [49], used a clustering-based method to estimate
SP for issue reports aiming at improving the performance of Deep-
SE. Marapelli et al. [29] built a model based on a tree-structured
RNN with Convolutional Neural Network (CNN) to predict SP for
user stories. This model adopts a Bi-directional LSTM (BiLSTM)
which improves Deep-SE’s prediction performance. More recently,
Fu and Tantithamthavorn [20] proposed GPT2SP, a Transformer-
based deep learning model for SP estimation of user stories and
found that this model outperforms Deep-SE.

5.3 Story Point as a Cost Driver for Agile Effort
Estimation

Zia et al. [58] considered human-expert estimated story size and
story complexity to compute SP for user stories and they used it
to estimate the actual effort and cost for software projects. They
introduced a regression-based model considering characteristics
of agile development. The model was applied to 21 previously de-
veloped small software projects and produced estimations with a
mean absolute error of four days. Later, Popli and Chauhan [33]
proposed a similar approach but evaluated the model on one small
project.

Ungan et al. [54], investigated the accuracy of multiple linear
estimators and a simple Artificial Neural Network estimator on 10
industrial projects as a case study. All the projects had their actual
effort and SP recorded by developers and their CFP were automati-
cally approximated using a tool named CUBIT. Results showed that
when the estimator uses CFP or SP, as independent variables, the
accuracy of effort estimation is low or at most acceptable, and none
of the two models is superior to the other.

Raslan et al. [35] proposed a fuzzy logic technique-based effort
estimation framework for user stories. The approach feeds expert
estimated SP alongside other parameters as input to a trapezoidal
membership function to estimate the actual effort. The model is
not evaluated on any real data; however, the authors designed a

framework based on the proposed model on MATLAB, to make it
ready for evaluation and possible adoption.

Satapathy et al. [39] used a dataset of 21 projects from the work
of Zia et al. [58] and evaluated the effort estimation accuracy of
different machine learning techniques, namely, Decision Trees (DT),
Stochastic Gradient Boosting (SGB), and Random Forest (RF). Based
on the results, the DT model underperformed the technique previ-
ously proposed by Zia et al. [58]. Whereas the SGB and RF models
performed better than it.

6 CONCLUSIONS
We have studied the relationship between human-expert estimated
Story Point (SP) and the time required by the developers to realise a
given issue (i.e., development time) on a large sample of open-source
user stories sampled from the TAWOS public dataset [48], which
consists of 37 software projects for different application domains,
diversified in size and characteristics, resulting in a total of 37,440
unique issues.

The results of our empirical study showed that, among the three
proxies for development time we studied herein, In-Progress time
is the most representative of the actual development time recorded
by the developers. When considering its correlation with human-
expert estimated SP we found that for the majority of the projects
such a correlation is low (35%) or medium (58%). Analysing the
correlation between SP and the actual development time unveiled
a similar outcome: SP showed a low (50%) or medium (25%) correla-
tion with Timespent. We also found that majority of the investigated
projects (25 out of 32) lack consistent human-expert estimations for
SP. The consistency starts to wear when the issues are estimated
to be bigger than five points, thereby suggesting that human es-
timators are not accurate at assessing the size of the issues that
need five times or more effort than an issue worth a single story
point. To overcome this issue Agile teams can try to break-down all
tasks/issues estimated to be bigger than five SP into smaller ones.

The above results provide empirical evidence that human-expert
estimated SP might not be a good indicator for the issue develop-
ment effort of Agile open-source projects. This might render any
machine-learnt effort estimation model, which learns from human-
expert estimated SP, vulnerable to the same bias and its impact
should be taken into account in future work. It would be interest-
ing, for example, to assess if more accurate effort estimation models
can be obtained by using the development time instead of SP as
a cost driver. Moreover, future work could replicate our study by
considering industrial projects to expand the understanding beyond
the open-source realm investigated herein. Also future work could
involve expert certified FSM measurers to compute the FP and CFP
of the user stories available in the TAWOS dataset, so that one could
carry out a large scale empirical study analysing the correlation
between SP, FP, CFP, and actual development time.

In order to allow for replication and extension of our work, we
make our data and scripts publicly available [51].

ACKNOWLEDGMENTS
Vali Tawosi, Rebecca Moussa and Federica Sarro are supported by
the ERC grant no. 741278 (EPIC).



On the Relationship Between Story Points and Development Effort in Agile Open-Source Software ESEM ’22, September 19–23, 2022, Helsinki, Finland

REFERENCES
[1] [n.d.]. Jira | Issue & Project Tracking Software | Atlassian. https://www.atlassian.

com/software/jira
[2] Macarious Abadeer and Mehrdad Sabetzadeh. 2021. Machine Learning-based Es-

timation of Story Points in Agile Development: Industrial Experience and Lessons
Learned. In 2021 IEEE 29th International Requirements Engineering Conference
Workshops (REW). IEEE, 106–115.

[3] Pekka Abrahamsson, Ilenia Fronza, Raimund Moser, Jelena Vlasenko, and Witold
Pedrycz. 2011. Predicting development effort from user stories. In 2011 Inter-
national Symposium on Empirical Software Engineering and Measurement. IEEE,
400–403.

[4] Silvia Abrahão, Lucia De Marco, Filomena Ferrucci, Jaime Gómez, Carmine
Gravino, and Federica Sarro. 2018. Definition and evaluation of a COSMIC mea-
surement procedure for sizing Web applications in a model-driven development
environment. Information and Software Technology 104 (2018), 144–161.

[5] Allan J Albrecht. 1979. Measuring application development productivity. In Proc.
Joint Share, Guide, and IBM Application Development Symposium, 1979.

[6] Allan J. Albrecht and John E Gaffney. 1983. Software function, source lines of
code, and development effort prediction: a software science validation. IEEE
transactions on software engineering 6 (1983), 639–648.

[7] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[8] Kent Beck and Martin Fowler. 2001. Planning extreme programming. Addison-
Wesley Professional.

[9] Sarah Boslaugh. 2012. Statistics in a nutshell: A desktop quick reference. " O’Reilly
Media, Inc.".

[10] Morakot Choetkiertikul, Hoa Khanh Dam, Truyen Tran, Trang Pham, Aditya
Ghose, and TimMenzies. 2018. A deep learning model for estimating story points.
IEEE Transactions on Software Engineering 45, 7 (2018), 637–656.

[11] Jacob Cohen. 2013. Statistical power analysis for the behavioral sciences. Academic
press.

[12] Mike Cohn. 2005. Agile estimating and planning. Pearson Education.
[13] Christophe Croux and Catherine Dehon. 2010. Influence functions of the Spear-

man and Kendall correlation measures. Statistical methods & applications 19, 4
(2010), 497–515.

[14] S. Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro. 2016.
Web Effort Estimation: Function Point Analysis vs. COSMIC. Information and
Software Technology 72 (2016), 90–109.

[15] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro. 2016.
Web effort estimation: function point analysis vs. COSMIC. Information and
Software Technology 72 (2016), 90–109.

[16] Sergio Di Martino, Filomena Ferrucci, Carmine Gravino, and Federica Sarro. 2020.
Assessing the Effectiveness of Approximate Functional Sizing Approaches for
Effort Estimation. Information and Software Technology 123 (2020).

[17] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro. 2015. Investigating Functional
and Code Size Measures for Mobile Applications. In Proceedings of Euromicro
Conference on Software Engineering and Advanced Applications. 365–368.

[18] Filomena Ferrucci, Carmine Gravino, Pasquale Salza, and Federica Sarro. 2015.
Investigating Functional and Code Size Measures for Mobile Applications: A
Replicated Study. In Product-Focused Software Process Improvement, Pekka Abra-
hamsson, Luis Corral, Markku Oivo, and Barbara Russo (Eds.). Springer Interna-
tional Publishing, Cham, 271–287.

[19] Martin Fowler, Jim Highsmith, et al. 2001. The agile manifesto. Software Devel-
opment 9, 8 (2001), 28–35.

[20] Michael Fu and Chakkrit Tantithamthavorn. 2022. GPT2SP: A Transformer-
Based Agile Story Point Estimation Approach. IEEE Transactions on Software
Engineering (2022).

[21] Michael Gammage. 2011. Why Your IT Project May Be Riskier Than You Think.
HARVARD BUSINESS REVIEW 89, 11 (2011), 22–22.

[22] Andrew R Gilpin. 1993. Table for conversion of Kendall’s Tau to Spearman’s
Rho within the context of measures of magnitude of effect for meta-analysis.
Educational and psychological measurement 53, 1 (1993), 87–92.

[23] Mayy Habayeb, Syed Shariyar Murtaza, Andriy Miranskyy, and Ayse Basar Bener.
2017. On the use of hidden markov model to predict the time to fix bugs. IEEE
Transactions on Software Engineering 44, 12 (2017), 1224–1244.

[24] Alaa El Deen Hamouda. 2014. Using agile story points as an estimation technique
in cmmi organizations. In 2014 agile conference. IEEE, 16–23.

[25] James F Hemphill. 2003. Interpreting the magnitudes of correlation coefficients.
(2003).

[26] Hennie Huijgens and Rini van Solingen. 2014. A replicated study on correlating
agile team velocity measured in function and story points. In Proceedings of the
5th International Workshop on Emerging Trends in Software Metrics. 30–36.

[27] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2
(1938), 81–93.

[28] Youngseok Lee, Suin Lee, Chan-Gun Lee, Ikjun Yeom, and Honguk Woo. 2020.
Continual prediction of bug-fix time using deep learning-based activity stream

embedding. IEEE Access 8 (2020), 10503–10515.
[29] Bhaskar Marapelli, Anil Carie, and Sardar MN Islam. 2020. RNN-CNN MODEL:

A Bi-directional Long Short-Term Memory Deep Learning Network For Story
Point Estimation. In 2020 5th International Conference on Innovative Technologies
in Intelligent Systems and Industrial Applications (CITISIA). IEEE, 1–7.

[30] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1–1.

[31] Marco Ortu, Giuseppe Destefanis, Bram Adams, Alessandro Murgia, Michele
Marchesi, and Roberto Tonelli. 2015. The jira repository dataset: Understanding
social aspects of software development. In Proceedings of the 11th international
conference on predictive models and data analytics in software engineering. 1–4.

[32] K Pearson. 1895. Notes on Regression and Inheritance in the Case of Two Parents
Proceedings of the Royal Society of London, 58, 240-242.

[33] Rashmi Popli and Naresh Chauhan. 2014. Cost and effort estimation in agile
software development. In 2014 international conference on reliability optimization
and information technology (ICROIT). IEEE, 57–61.

[34] Simone Porru, Alessandro Murgia, Serge Demeyer, Michele Marchesi, and
Roberto Tonelli. 2016. Estimating story points from issue reports. In Proceedings
of the The 12th International Conference on Predictive Models and Data Analytics
in Software Engineering. 1–10.

[35] Atef Tayh Raslan, Nagy Ramadan Darwish, and Hesham Ahmed Hefny. 2015.
Towards a fuzzy based framework for effort estimation in agile software devel-
opment. International Journal of Computer Science and Information Security 13, 1
(2015), 37.

[36] J Patrick Royston. 1982. An extension of Shapiro and Wilk’s W test for normality
to large samples. Journal of the Royal Statistical Society: Series C (Applied Statistics)
31, 2 (1982), 115–124.

[37] Murat Salmanoglu, Tuna Hacaloglu, and Onur Demirors. 2017. Effort estimation
for agile software development: Comparative case studies using COSMIC func-
tional size measurement and story points. In Proceedings of the 27th International
Workshop on Software Measurement and 12th International Conference on Software
Process and Product Measurement. 41–49.

[38] Célio Santana, Fabiana Leoneo, Alexandre Vasconcelos, and Cristine Gusmão.
2011. Using function points in agile projects. In International Conference on Agile
Software Development. Springer, 176–191.

[39] Shashank Mouli Satapathy and Santanu Kumar Rath. 2017. Empirical assessment
of machine learning models for agile software development effort estimation
using story points. Innovations in Systems and Software Engineering 13, 2 (2017),
191–200.

[40] Ezequiel Scott and Dietmar Pfahl. 2018. Using developers’ features to estimate
story points. In Proceedings of the 2018 International Conference on Software and
System Process. 106–110.

[41] Reza Sepahvand, Reza Akbari, and Sattar Hashemi. 2020. Predicting the bug
fixing time using word embedding and deep long short term memories. IET
Software 14, 3 (2020), 203–212.

[42] Martin Shepperd and Steve MacDonell. 2012. Evaluating prediction systems in
software project estimation. Information and Software Technology 54, 8 (2012),
820–827.

[43] Rodrigo GF Soares. 2018. Effort Estimation via Text Classification And Autoen-
coders. In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE,
01–08.

[44] Ian Sommerville. 2016. Software Engineering GE. Pearson Australia Pty Limited.
[45] Charles Spearman. 1961. The proof and measurement of association between

two things. (1961).
[46] Charles Symons. 2019. The COSMIC Method for Measuring the Work-Output

Component of Productivity. In Rethinking Productivity in Software Engineering.
Springer, 191–204.

[47] Charles Symons, Alain Abran, Christof Ebert, and Frank Vogelezang. 2016. Mea-
surement of software size: advances made by the COSMIC community. In 2016
Joint Conference of the International Workshop on Software Measurement and the
International Conference on Software Process and Product Measurement (IWSM-
MENSURA). IEEE, 75–86.

[48] Vali Tawosi, Afnan Al-Subaihin, Rebecca Moussa, and Federica Sarro. 2022. A
Versatile Dataset of Agile Open Source Software Projects. In Proceedings of the
19th International Conference on Mining Software Repositories (MSR ’22). IEEE.

[49] Vali Tawosi, Afnan Al-Subaihin, and Federica Sarro. 2022. Investigating the
Effectiveness of Clustering for Story Point Estimation. In Proceedings of the 29th
IEEE International Conference on Software Analysis, Evolution and Reengineering.
IEEE, 816–827.

[50] Vali Tawosi, Rebecca Moussa, and Federica Sarro. 2022. Deep Learning for Agile
Effort Estimation Have We Solved the Problem Yet? arXiv:2201.05401 [cs.SE]

[51] Vali Tawosi, Rebecca Moussa, and Federica Sarro. 2022. Online Appendix
containing Data and R Scripts for this study. https://github.com/SOLAR-
group/SPvsDevelopmentEffort.git

[52] Vali Tawosi, Federica Sarro, Alessio Petrozziello, and Mark Harman. 2021. Multi-
objective software effort estimation: a replication study. IEEE Transactions on
Software Engineering (2021).

https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
https://arxiv.org/abs/2201.05401
https://github.com/SOLAR-group/SPvsDevelopmentEffort.git
https://github.com/SOLAR-group/SPvsDevelopmentEffort.git


ESEM ’22, September 19–23, 2022, Helsinki, Finland Tawosi, Moussa, and Sarro

[53] Adam Trendowicz and Ross Jeffery. 2014. Software project effort estimation.
Foundations and Best Practice Guidelines for Success, Constructive Cost Model–
COCOMO pags (2014), 277–293.

[54] Erdir Ungan, NumanÇizmeli, andOnurDemirörs. 2014. Comparison of functional
size based estimation and story points, based on effort estimation effectiveness in
SCRUM projects. In 2014 40th EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE, 77–80.

[55] MuhammadUsman, EmiliaMendes, and Jürgen Börstler. 2015. Effort estimation in
agile software development: a survey on the state of the practice. In Proceedings
of the 19th international conference on Evaluation and Assessment in Software
Engineering. 1–10.

[56] Muhammad Usman, Emilia Mendes, Francila Weidt, and Ricardo Britto. 2014.
Effort estimation in agile software development: a systematic literature review.
In Proceedings of the 10th international conference on predictive models in software
engineering. 82–91.

[57] Jie M Zhang, Feng Li, Dan Hao, Meng Wang, Hao Tang, Lu Zhang, and Mark
Harman. 2019. A study of bug resolution characteristics in popular programming
languages. IEEE Transactions on Software Engineering 47, 12 (2019), 2684–2697.

[58] Shahid Kamal Tipu Ziauddin and Shahrukh Zia. 2012. An effort estimation model
for agile software development. Advances in computer science and its applications
(ACSA) 2, 1 (2012), 314–324.


	Abstract
	1 Introduction
	2 Background
	2.1 Software Size Measures
	2.2 Jira Workflow and Issue Development Time

	3 Empirical Study Design
	3.1 Research Questions
	3.2 Methodology
	3.3 Dataset
	3.4 Threats to Validity

	4 Empirical Study Results
	4.1 RQ1. Approximating Issue Development Time
	4.2 RQ2. Correlation
	4.3 RQ3. Consistency

	5 Related Work
	5.1 Software Size Measures and Agile Development Effort
	5.2 Automated Story Point Prediction
	5.3 Story Point as a Cost Driver for Agile Effort Estimation

	6 Conclusions
	Acknowledgments
	References

