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Abstract—Automated techniques to estimate Story Points (SP)
for user stories in agile software development came to the fore
a decade ago. Yet, the state-of-the-art estimation techniques’
accuracy has room for improvement.

In this paper, we present a new approach for SP estimation,
based on analysing textual features of software issues by em-
ploying latent Dirichlet allocation (LDA) and clustering. We first
use LDA to represent issue reports in a new space of generated
topics. We then use hierarchical clustering to agglomerate issues
into clusters based on their topic similarities. Next, we build
estimation models using the issues in each cluster. Then, we find
the closest cluster to the new coming issue and use the model
from that cluster to estimate the SP.

Our approach is evaluated on a dataset of 26 open source
projects with a total of 31,960 issues and compared against both
baselines and state-of-the-art SP estimation techniques.

The results show that the estimation performance of our
proposed approach is as good as the state-of-the-art. However,
none of these approaches is statistically significantly better than
more naive estimators in all cases, which does not justify their
additional complexity. We therefore encourage future work to
develop alternative strategies for story points estimation.

The experimental data and scripts we used in this work are
publicly available to allow for replication and extension.

Index Terms—Software Effort Estimation, Story Point Estima-
tion, Latent Dirichlet Allocation, Hierarchical Clustering

I. INTRODUCTION

In agile development, Story Point (SP) is a commonly used
measure of the complexity and required effort of completing a
software development task, [1], [2]. Teams typically carry out
assigning story points to these tasks in order to plan for the
content of upcoming sprints. To this end, teams mainly rely
on expert estimation methods like Planning Poker and Delphi
[3]. However, expert judgment has been shown to be prone to
bias due to its reliance on subjective assessment [4]–[6]. This
motivated several research endeavours to find automated ways
to predict story points of a task given its features with the aim
of avoiding inaccurate estimations by human judgement, in
addition to, and more importantly to an agile team, producing
consistent estimations throughout the project’s lifecycle.

Task descriptions (referred to as user stories in agile devel-
opment) are a convenient information source for both humans
and automated SP estimators. This information, which is
usually conveyed via few sentences written in natural language
by product owners, developers, or users, is available upon the

creation of a new task. Most SP estimation techniques study
the similarities between the task at hand and the previously
completed tasks to decide on the SP value of the new task
[7], [10]–[14].

On the other hand, previous studies in software effort
estimation showed that software engineering data often contain
a large amount of variability [23], [27]; as previously shown
in the literature for traditional software effort estimation [18]–
[21], [23], [24], [26].

Therefore, in order to help reduce such variability, we
propose and investigate the suitability of a novel clustering-
based model to estimate the SP values of new issues. We dub
our proposed approach LDA-based Hierarchical Clustering for
Story point Estimation (LHC-SE), hereafter.

The proposed approach, LHC-SE, relies on the similarities
of historical issue descriptions by grouping them into coherent
clusters, that maximize their prediction power. These clusters
are formed by representing issues as vectors of their LDA-
extracted topics; the estimation of SP for a new issue is then
inferred from the SP scores of issues in its assigned cluster. We
report the results of three SP assignments (estimation models)
based on the resulting clusters: first is assigning the issue at
hand the mean SP of the issues in its assigned cluster, the
median of the aforementioned, and finally, assigning it the SP
of the issue deemed most similar.

In order to evaluate the proposed approach, we use the
largest publicly available dataset of issues mined from 26
Agile projects to date [44]. The SP values estimated by human
experts are used as the ground truth to evaluate the accuracy of
our estimation model. Accuracy is measured by using robust
measures such as the mean and median absolute errors of
the estimations, and the relative improvement over random
guessing [30].

The results show that clustering issues based on their topic
similarity (i.e., LHC-SE) improves the accuracy of estimation
over Random Guessing and Mean baseline method, with
statistical significance. While it is comparable to the state-of-
the-art SP methods proposed in literature. We also observed
that the Median baseline estimator achieves similar accuracy as
our model and the state-of-the-art on this dataset. We discuss
these results and our observations in Section VI. The scripts
and data we used in this study can be found on-line [51], [52].



II. RELATED WORK

Initial research proposing a technique to predict the Story
Point (SP) of an issue based on its description appeared almost
a decade ago. These studies focused mostly on producing
models that act only as a decision support system for expert
estimators in agile teams. Abrahamsson et al. [10] were the
first to propose an automated method for SP estimation. They
used 17 features extracted from the user story, including
priority, the number of the characters in the user story and
15 binary variables presenting the occurrence of 15 keywords
in the user story, to train Machine Learning (ML) methods.
They evaluated their approach on an industrial dataset of 1,338
issues and found this feature set effective to achieve a good
accuracy.

Porru et al. [11] treated the SP estimation problem as a
classification problem. Their approach used features extracted
from 4,908 issue descriptions collected from open-source
repositories. Specifically, they extract the type of the issue, the
component(s) related to it, and the Term Frequency-Inverse
Document Frequency (TF-IDF) derived from the title and
description of the issue. They confirmed Abrahamsson et alia’s
findings that user stories and their length are useful predictors
for story point estimation. Their results also indicate that more
than 200 issues were needed for training a classifier that can
serve as a stable model with satisfactory accuracy.

Scott and Pfahl [12] used developer-related features along-
side the features extracted from 4,142 user stories collected
from eight open-source projects to estimate the story points
using ML tools. Developer-related features include the devel-
oper’s reputation, workload, work capacity, and the number
of comments. The results showed that using only developers’
features as the input for the estimation model outperforms
random guessing, mean, and median baseline estimators. This
model also outperformed two other models: one that uses only
features extracted from the text and another one using both the
developers’ features and text features together.

Soares [13] used auto-encoder neural networks to classify
user stories based on their semantic differences in order to
estimate their SP. The study used four variants of auto-
encoders and found no significant difference between them
with respect to their SP estimation accuracy. Soares speculated
that the relative semantic simplicity of user stories lead to these
results. He evaluated these methods using 3,439 issue reports
collected from six open source project.

Choetkiertikul et al. [14] combined two deep learning ar-
chitectures to build an end-to-end SP prediction system, which
they call Deep-SE. The input to their system is raw user story
text. Through deep-learning, they convert user stories into a
fixed-length vector, which is then fed to a regressor that maps
the deep representation to the output SP estimation. Deep-SE
is evaluated using 23,313 issues collected from nine open-
source repositories. They found that Deep-SE outperforms the
approach proposed by Porru et al. [11] and baseline bench-
marks in terms of MAE, statistically significantly. Recently,
Abadeer and Sabetzadeh [39] adopted Deep-SE and evaluated

it on a commercial project with 4,727 user stories. They
found Deep-SE applicable in a non-open source setting as it
outperformed the baselines statistically significantly.

To the best of our knowledge, our study is the first to
investigate whether clustering can help improve SP estimation
accuracy by reducing the variance in the issue descriptors.
This is motivated by the observations made in previous work
on traditional software effort estimation where clustering tech-
niques are employed to reduce the variability, which often lead
to construction of more accurate effort estimation models [18],
[19], [21], [23], [24], [26], [42], [43]. Previous work that use
clustering mainly use it to group together projects according
to attributes that are pertinent to the task of effort estimation
(i.e., cost drivers) such as size measures or manager/team
experience. Whereas our study uses clustering to group the
issue reports according to their topic. This makes the approach
independent from the cost-drivers used as the basis for the
estimation. Furthermore, our study employs the largest dataset
(26 open-source projects and a total of 31,960 issues) used for
SP estimation thus far [44].

III. THE PROPOSED METHOD

The proposed method relies on clustering similarly de-
scribed issues, such that, given an issue with an unknown SP
score, its score can be derived from the SP scores of the issues
deemed most similar to it (i.e., issues that reside in the same
cluster).

In order to carry out the clustering, the similarities among
issues need to be measured based on their natural language
description. To this end, issues are represented as vectors in
a numerical vector space, such that the distance among issues
could be used as a proxy for issue similarity. In this study,
we use topic modelling, namely, Latent Dirichlet Allocation
(LDA); which uses statistical models to infer a set of topics in
textual documents, and represents the documents as the set of
probabilities of their relevance to each of the inferred topics
[9], [28].

Equipped with a numerical representation of issues in a
vector space, a clustering algorithm can be employed to group
similar issues together. Many clustering techniques require
the choice of k (number of clusters) to be known a priori,
which is usually unknown for software engineering data [18].
In order to enable the discovery of a suitable k, we elect
to use hierarchical clustering which produces a dendrogram
that can be efficiently investigated for the most suitable cut-
off point [8]. In this study, this choice of k is guided by
estimation accuracy on a validation subset of the dataset. Using
the resulting clusters, when a new issue needs to be assigned
an SP score, it is first converted to a vector using the pre-
existing LDA model. Afterwards, the most suitable cluster for
the issue is identified as the one to which the closest issue
belongs. Once the cluster of most similar issues is identified,
we report the results of first assigning the issue the mean SP
scores of issues in the similar cluster, the median, and finally,
simply assigning the issue the SP score of the most similar
issue in the historical dataset.
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Fig. 1. Perplexity of the LDA topic model per number of topics (i.e., t-
values).

A. Text Pre-processing and Topic Modelling

To capture the context of issue reports and their purpose, the
title and the description of the issue are combined, dubbed the
issue-context hereafter. In order to create a vector representa-
tion of the issue-context, we first perform basic text cleaning
and pre-processing operations on the text. Specifically, we
remove URLs, code snippets, and all non-alphanumeric char-
acters from the issue-context, convert the text to lowercase,
remove punctuation, remove English stop-words, and remove
words with less than two characters. We do not perform
stemming, as previous work showed it is prone to over-
stemming, which lowers the accuracy of the results [15].

To generate an LDA topic model, we first join all the pre-
processed training issue-contexts from a designated training
subset of issues for all 26 projects used in our study to build a
large corpus. The training corpus was then fed into the LDA
topic modelling algorithm (using the topicmodels library
in R). In order to set the number of topics t needed by the
generative model, we explore over the range of t values, to
find the t that produces a model with the minimum perplexity.
The perplexity was evaluated using the validation subset of the
dataset which was not included in the initial model generation.
The used LDA technique employs Gibbs sampling [29] to
identify topics in the corpus, the α and δ parameters were
set to 1/t and 0.1 respectively. Fig. 1 shows the perplexity
of the models built for different t values. We find that the
model with the least perplexity is produced with 2,265 topics.
The generated topic model is then used to generate posterior
probabilities for issues in the testing subset of the dataset;
thus representing each issue as the vector of all topics such
that each cell in the vector represents the relatedness of the
issue to the topic.

B. Clustering

Given the generated vector space of the issues in the dataset,
a clustering algorithm is used to cluster similar issues, with
regards to their topics, to cohesive clusters. This is done using
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Fig. 2. A sample dendrogram of agglomerative hierarchical clustering of
issues (COMPASS project). A sample cut-off line is shown on the plot, which
cuts the dendrogram at level 6, thus producing 6 clusters.

agglomerative hierarchical clustering (using Ward’s linkage
criterion [16] and cosine as a distance measure). This generates
a dendrogram of the clustering options for each k. This
dendrogram can be explored at various cut-off points. A
sample dendrogram for the COMPASS project is shown in
Fig. 2.

In order to discover the most suitable k, we perform a
simple greedy search to find the cut-off point that generates
the clustering solution that would produce the most accurate
estimation models.

We investigate three strategies for selecting the most suitable
cut-off k: (a) a k which when used, the estimation models
of the resulting clustering produce the lowest Mean Absolute
Error (i.e., MAE-based strategy), (b) a k which when used, the
estimation models produce the lowest Median Absolute Error
(i.e., MdAE-based strategy), and (c) a k which when used,
the resulting clusters have the highest silhouette index (i.e.,
Silhouette-based strategy). The silhouette index is an internal
measure of cluster quality by calculating how similar are the
issues to each other in their own cluster (cohesion) compared
to other clusters (separation) [17]. To evaluate the first two
strategies, MAE and MdAE are calculated over the validation
subset of the dataset. We examine a range of different k values
per project, starting from 3 to 0.9 × l with l

10 increments,
where l is the size of the training set. We chose one k value
per project using each of the three strategies, and perform
experiments with all three strategies.

C. Estimation Models

Once a clustering solution is selected, an SP estimation
model is built using issues in each cluster. We investigate
three models: (a) Cluster Mean-based and (b) Cluster Median-
based estimators, which return the mean/median SP of all the
issues in the cluster, respectively; and (c) Closest Point-based
estimator, which returns the SP value of the closest issue to
the queried issue, as the estimated SP.

Given a new issue, the previously generated topic model
is used to compute the posterior probabilities of the issue-
context. Then, its cosine distance from all the issues used in
the training phase is computed to determine the closest cluster



to the issue at hand. Then, the estimation model of that cluster
is used to estimate SP value for the new issue.

IV. EMPIRICAL STUDY DESIGN

In order to evaluate the performance of LHC-SE, we inves-
tigate the accuracy of the SP estimation models it produces.
Additionally, we explore whether additional features help
improve the estimation accuracy of the clustering approach.
Finally, we compare the resulting performance with other
state-of-the-are techniques in SP effort estimation using natural
language. To answer these question, we train, evaluate and
validate using a dataset of issues collected from 26 projects,
from 13 different open-source repositories. Following is a
detailed report of the empirical study design.

A. Research Questions

We investigate three research questions to asses the effec-
tiveness of LHC-SE, against the baseline methods and previous
work.

1) RQ1. Does clustering of issue reports based on their
textual similarities help accurately estimate story points?: To
see whether the proposed approach is a suitable method for
estimating story points, we compare it against baseline estima-
tors. Specifically, we compare LHC-SE to Random guessing,
Mean and Median baselines. Mean and Median baselines are
simple models used for sanity checks; they mainly involve
assigning the issue at hand the mean and median SP over all
previous issues, respectively.

To be accepted as a suitable estimation method, LHC-SE
should be able to outperform these baseline techniques.

2) RQ2. Can additional features help improve estimation
accuracy of the clustering approach?: In a further inves-
tigation, we augment the LDA-generated topic probabilities
extracted from issue-context with additional features in the
vector space. In particular, we add two features that are
available when the issue is created: the issue type (e.g., story,
improvement, bug, etc.) and the component(s) from which
the issue rose (e.g., UI, Runtime, DSL, etc.). Since type
and component are categorical variables, we use a one-hot
encoding to convert them to numerical features to be able
to exploit them with our approach. We also add issue report
length, which is the number of characters used to describe
the issue. This can serve as an indicator of the complexity of
the issue. Adding these features creates a new variant of our
model, we call it LHCTC-SE to distinguish it from the base
LHC-SE model.

Furthermore, we add TF-IDF features to LHCTC-SE fea-
tures to see if they help the clustering approach achieve more
coherent clusters, thus improve its estimation accuracy. We
refer to this variant as LHCTC+TFIDF -SE.

3) RQ3. How does the clustering approach compare to the
existing SP estimation approaches?: To answer this question,
we compare the best variant of our clustering approach-
based model to two previous work, including a sate-of-the-
art deep-learning-based model for SP estimation. Specifically,

we compare the estimation accuracy of our approach to TF-
IDF-SE and Deep-SE (see description of these approaches in
Section IV-C).

B. Data

We use a large number of issues extracted from the TAWOS
dataset [50]. TAWOS dataset comprises of 44 projects mined
from 13 different open-source repositories. All projects use ag-
ile development methodologies. The dataset contains multiple
features including the title, description, type, and component
for more than half a million issues, out of which 69,724 issues
have recorded human-estimated SP.

In this study we used a subset of the TAWOS dataset for a
total of 31,960 issues extracted from 26 projects mined from
13 different open-source repositories. This subset has been also
used in a previous work on agile software effort estimation
[44]. Table I shows the descriptive statistics of the data used
herein. Due to space limitations, full details about how the data
was collected and its characteristic can be found elsewhere
[44], [50].

For each project, we ordered the issues in ascending order
with respect to their creation time, and split them in three
subsets (namely, training, validation, and testing) with a ratio
of 60%:20%:20%, thereby using the older issues for training
and newer issues for testing.

C. Benchmarks

This section provides an overview of the story point estima-
tion techniques that are used for comparison; namely Deep-SE
[14], TF-IDF-SE [11], and the Median, Mean, and Random
Guessing (RG) baselines. Deep-SE is the current state-of-
the-art in story point estimation. Both Deep-SE and TF-IDF-
SE leverage the similarity between the target issue and the
previously estimated issues to produce an estimation for the
target issue. TF-IDF-SE relies on the term frequency-inverse
document frequency (TF-IDF) feature model, while, Deep-
SE uses advanced techniques in deep-learning to exploit the
semantic similarity between user stories. On the other hand,
the three baselines are agnostic to any information from the
issue description and only use the distribution characteristics
(i.e., mean, median, or random sampling) of the previous
estimations to estimate new SPs.

1) Deep-SE: is an end-to-end deep learning model to
estimate story point score of a software issue, proposed by
Choetkiertikul et al. [14]. This model is composed of four
components: (1) Word Embedding, (2) Document represen-
tation using Long-Short Term Memory (LSTM) [34], [35],
(3) Deep representation using Recurrent Highway Network
(RHWN) [36], and (4) Differentiable Regression. The first
component converts each word in the title and description
of issues into a fixed-length vector (i.e., word embedding).
These word vectors are then fed to the LSTM layer which in
turn computes a vector representation for the story. Then, the
RHWN accepts the document vector as input and transforms
it multiple times, until a final vector which represents the text
is produced as output. This final vector serves as input to



TABLE I
DESCRIPTIVE STATISTICS OF THE DATA [44] USED IN THIS STUDY.

Repository Project Key Story Point
#Issues Min Max Mean Median Std

Apache Mesos MESOS 1,513 0 13 3.15 3 2.14

Alloy ALOY 241 0 13 3.71 3 2.32
Appcelerator Studio TISTUD 2,794 0 40 5.48 5 3.23
Aptana Studio APSTUD 476 0 100 7.93 8 7.19
Command-Line Interface CLI 293 0 13 3.18 3 2.30
Daemon DAEMON 205 1 13 5.58 5 3.76
Documentation TIDOC 1,005 0 40 3.58 2 3.68

Appcelerator

Titanium TIMOB 3,915 0 20 4.68 5 3.32

Clover CLOV 336 0 100 5.33 2 11.03
Confluence Cloud CONFCLOUD 234 0 13 2.91 2 2.24Atlassian
Confluence Server and Data Center CONFSERVER 456 0 13 3.12 3 1.93

DNNSoftware DotNetNuke Platform DNN 2,064 0 100 2.05 2 2.56

DuraSpace Duracloud DURACLOUD 310 0 20 1.72 1 1.70

Fabric FAB 303 0 40 2.69 2 3.20Hyperledger Sawtooth STL 206 0 5 2.09 2 1.19

Lsstcorp Data Management DM 5,381 0 100 3.05 2 6.87

Compass COMPASS 260 1 8 3.55 3 1.85
Core Server SERVER 519 0 20 2.58 2 2.40MongoDB
Evergreen EVG 2,824 0 8 1.43 1 0.86

Moodle Moodle MDL 1,394 0 100 11.80 5 18.81

MuleSoft Mule MULE 2,935 0 13 3.88 3 3.46

Sonatype Sonatype’s Nexus NEXUS 1,425 0 40 1.70 1 1.82

Spring SpringXD XD 811 0 20 3.16 3 2.56

Talend Data Preparation TDP 471 0 13 2.31 2 1.84
Talend Data Quality TDQ 859 0 40 6.01 5 4.66Talendforge
Talend ESB TESB 730 0 13 2.13 2 1.45

Total 31,960

the regressor, which predicts the output story point. The word
embedding and LSTM layers are pre-trained without using SP
values to come up with a proper parameter initialization for
the main deep structure (referred to as the pre-trained language
models). We used the implementation of Deep-SE provided by
Choetkiertikul et al., in their replication package [41].

2) TF-IDF-SE: is proposed by Porru et al. [11], and
treats SP estimation as a classification problem. It uses the
title, description and length of issues, alongside their type
and component, to build a machine learning classifier for
story point estimation. They separate the code snippets (if
any) from natural language text in the issue description and
analyse two chunks separately to extract TF-IDF features.
They concatenate three feature sets, two extracted from text
and code chunks respectively, and the third is a one-hot
representation of issues’ type and components, before reducing
the dimension using feature selection. The selected features
are then fed to a Support Vector Machine (SVM) to classify
issues into SP classes. Choetkiertikul et al. [14] also provided
the implementation for TF-IDF-SE in their replication package
[41], which we used in this study.

3) Random Guessing: is a naı̈ve method that simply assigns
story point of a randomly selected issue from past to the
target issue [30]. Comparison over random guessing serves
as a sanity check for a proposed effort estimation technique.
Formally, random guessing predicts a story point value y for
the target case issuet by uniformly randomly sampling over

all the remaining n − 1 cases and taking y = r; where
r is the story point for the randomly drawn issuer from
1...n | issuer ̸= issuet. This method does not need any
parameter estimation and any prediction system is expected
to outperform it over time, otherwise, the prediction system is
not using any target case information.

4) Mean and Median Estimators: are two baseline bench-
marks commonly used for effort estimation techniques [32],
[37], [38]. Specifically, the mean or median story point of the
past issues is used as the predicted story point for a new issue.

D. Evaluation Measures

Similar to previous studies on software effort estimation,
we use measurements that are built upon the error (or absolute
error) between the predicted value and the actual value. These
measures (defined in Equations 1, 2 and 3) have been found
in previous work to be unbiased towards under- or over-
estimations [6], [14], [30]–[32]. These measure are the Mean
Absolute Error (MAE), the Median Absolute Error (MdAE),
and the Standard Accuracy (SA).

Across n issues, the MAE and MdAE of prediction for a
project are computed as follows:

MAE =
1

n

n∑
i=1

|actuali − predictedi| (1)

MdAE = Mediann
i=1

{
|actuali − predictedi|

}
(2)



where actuali is the actual SP, predictedi is the predicted SP
for the ith issue, and n is the number of issues in the project.
SA was recommended by Shepperd and MacDonell [30]

as a standard measure to compare multiple prediction models
against each other. It is based on MAE and defined as follows:

SA =

(
1− MAEpi

MAEp0

)
× 100 (3)

where MAEpi is the MAE of the approach pi being evaluated
and MAEp0

is the MAE of a large number (usually 1, 000
runs) of random guesses.

For a prediction model pi which outperforms random
guessing in terms of accuracy, SA will take a value in
the range [0, 1]. An SA value closer to zero means that
the predictor pi is not performing much better than random
guessing [30]. A negative SA value means that the prediction
model is outperformed by random guessing. For a high-
performance prediction model, MAE and MdAE should be
lower, whereas SA should be higher.

E. Statistical Analysis

To check if the difference in the results achieved by
two methods is statistically significant, we performed a non-
parametric statistical test. Specifically, the Wilcoxon Ranked-
Sum test (a.k.a. Mann–Whitney U test) [40] with confidence
limit at α = 0.05, corrected with Bonferroni, is applied on the
distribution of the absolute errors produced by the methods
under investigation. We tested the hypothesis:

H0: The absolute errors produced by the prediction
model Pi are higher than those produced by the
prediction model Pj .

We used one-way Wilcoxon test; hence, if the test rejects
the null hypothesis, the alternative hypothesis is accepted:

H1: The absolute errors produced by the Pi are lower
than those provided by the Pj .

As done in previous work [45]–[48], we use the win-loss-
tie counting to summarise the results of the Wilcoxon test, as
follows: if the distribution i is statistically significantly better
(less) than j according to the Wilcoxon test we update wini

and lossj , otherwise we increment tiei and tiej .
To measure the effect size of the difference, we use Vargha

Delaney’s Â12 measure [33], which is a standardised non-
parametric effect size measurement, to assess the effect size
of the difference between two methods [32], [33]. For two
algorithms 1 and 2, Â12 measures the probability of 1 per-
forming better than 2 with respect to a performance measure.
Â12 is computed using Equation (4), where R1 is the rank
sum of the first data group being compared, and m and n
are the number of observations in the first and second data
sample, respectively. Based on Equation (4), if two algorithms
are equally good, Â12 = 0.5. Respectively, Â12 higher than

0.5 means that the first algorithm is more likely to produce
better predictions. The effect size is considered small for
0.6 ≤ Â12 < 0.7, medium for 0.7 ≤ Â12 ≤ 0.8, and large for
Â12 ≥ 0.8, although these thresholds are not definitive [6].

Â12 =
(R1

m − m+1
2 )

n
(4)

V. RESULTS

This section presents the results of our empirical study for
each of the proposed research questions.

A. RQ1. Does clustering of issue reports based on their textual
similarities help accurately estimate story points?

Identifying the best LHC-SE model: As described in
Sections III-B and III-C, our study explores the use of LHC-
SE with three different cluster forming strategies and three
estimators, for a total nine different LHC-SE estimation mod-
els. Before comparing LHC-SE to the baselines, we study
which combination of cluster forming and estimation strategies
works best with LHC-SE. To this end, we compare these nine
strategies against each other based on the Wilcoxon Rank-Sum
test and summarise the results using the win-loss-tie approach
explained in Section IV-E. The results are shown in Table II,
where for each method, the rows and columns represent the
nine strategies, and each cell contains the number of cases (out
of 26 projects) the strategy in the row won/lost/tied against the
strategy in the column. Specifically, a win is counted if the
strategy in the row produces statistically significantly lower
absolute errors than the strategy in the column.

Based on the results shown in Table II, we can observe
that the MAE-based k-selection strategy with Cluster Median
estimation model wins most of the times (117 wins, 1 loss,
and 90 ties). Thus, we select this combination of strategy and
estimation model for LHC-SE to compare with the baselines.

Sanity Check: Table III shows the MAE and SA values
achieved by LHC-SE and the baselines. The MdAE values
are also reported, for completeness.

We can observe that 24 out of 26 SA values for LHC-
SE are positive, which means that LHC-SE outperforms the
Random Guessing (RG) baseline in 24 cases (exceptions are
the STL and DURACLOUD projects). For all these 24 cases,
the difference between the absolute errors produced by LHC-
SE and RG is statistically significant in favour of LHC-SE,
and 12 cases also showed a large or medium effect size, while
the remaining a small or negligible one.

LHC-SE achieves a good performance against Mean base-
line as well. It outperforms the Mean estimator in 20 cases,
while under-performing in only 6 cases. From these 20 cases,
the improvement is statistically significant in 18 cases, with
large effect size in 5 cases and small or negligible one
in the rest. However, against the Median estimator, LHC-
SE performs rather poorly, albeit with a negligible effect
size. Although LHC-SE outperforms the Median estimator
in 10 cases, in the remaining 16 cases the Median estimator
outperforms LHC-SE. Nonetheless, the results of the Wilcoxon
test reveal that the difference in the estimation performance



TABLE II
RQ1 AND RQ2: WIN-LOSS-TIE RESULTS COMPARING THE NINE DIFFERENT COMBINATIONS OF THREE CLUSTER BUILDING METHODS AND THREE

ESTIMATION STRATEGIES FOR EACH OF THE THREE LHC-SE-BASED VARIANTS. THE BEST STRATEGY FOR EACH VARIANT IS HIGHLIGHTED.

RQ Win/Loss/Tie

R
Q

1

Method LHC-SE

k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Sum

L
H

C
-S

E

Closest Point 3/8/15 0/20/6 0/0/26 3/9/14 0/20/6 0/0/26 2/6/18 0/14/12 8/77/123
Cluster Mean 8/3/15 0/17/9 8/3/15 0/5/21 0/17/9 8/3/15 0/5/21 0/13/13 24/66/118MAE-based
Cluster Median 20/0/6 17/0/9 20/0/6 16/0/10 1/1/24 20/0/6 18/0/8 5/0/21 117/1/90

MdAE-based
Closest Point 0/0/26 3/8/15 0/20/6 3/9/14 0/20/6 0/0/26 2/6/18 0/14/12 8/77/123
Cluster Mean 9/3/14 5/0/21 0/16/10 9/3/14 0/16/10 9/3/14 0/5/21 0/13/13 32/59/117
Cluster Median 20/0/6 17/0/9 1/1/24 20/0/6 16/0/10 20/0/6 16/0/10 3/0/23 113/1/94

Silhouette-based
Closest Point 0/0/26 3/8/15 0/20/6 0/0/26 3/9/14 0/20/6 2/6/18 0/14/12 8/77/123
Cluster Mean 6/2/18 5/0/21 0/18/8 6/2/18 5/0/21 0/16/10 6/2/18 0/12/14 28/52/128
Cluster Median 13/0/13 13/0/13 0/5/21 13/0/13 13/0/13 0/3/23 13/0/13 12/0/14 77/8/123

R
Q

2

Method LHCTC-SE

k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Sum

L
H

C
T
C

-S
E

Closest Point 3/6/17 0/16/10 1/0/25 4/6/16 0/17/9 1/0/25 3/5/18 0/17/9 12/67/129
Cluster Mean 6/3/17 0/13/13 5/5/16 2/3/21 1/14/11 5/4/17 5/2/19 1/14/11 25/58/125MAE-based
Cluster Median 16/0/10 13/0/13 16/0/10 16/0/10 3/1/22 15/0/11 18/0/8 4/1/21 101/2/105

MdAE-based
Closest Point 0/1/25 5/6/15 0/16/10 7/6/13 1/17/8 0/0/26 5/6/15 0/16/10 18/68/122
Cluster Mean 6/4/16 3/2/21 0/16/10 5/7/14 1/15/10 5/6/15 7/3/16 1/15/10 28/68/112
Cluster Median 17/0/9 14/1/11 1/3/22 17/1/8 15/1/10 17/1/8 17/1/8 2/1/23 100/9/99

Silhouette-based
Closest Point 0/1/25 4/5/17 0/15/11 0/0/26 6/5/15 1/17/8 4/5/17 0/17/9 15/65/128
Cluster Mean 5/3/18 2/5/19 0/18/8 5/5/16 3/7/16 1/17/8 5/4/17 1/17/8 22/76/110
Cluster Median 17/0/9 14/1/11 1/4/21 16/0/10 15/1/10 1/2/23 17/0/9 17/1/8 98/9/101

R
Q

2

Method LHCTC+TFIDF -SE

k-selection strategy MAE-based MdAE-based Silhouette-based
Estimator Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Closest Point Cluster Mean Cluster Median Sum

L
H

C
T
C
+
T
F
I
D
F

-S
E MAE-based

Closest Point 4/13/9 0/20/6 0/0/26 4/12/10 1/21/4 0/0/26 5/12/9 1/20/5 15/98/95
Cluster Mean 13/4/9 0/17/9 13/4/9 5/5/16 1/18/7 13/4/9 5/2/19 2/17/7 52/71/85
Cluster Median 20/0/6 17/0/9 20/0/6 17/0/9 0/1/25 20/0/6 17/0/9 2/2/22 113/3/92

Closest Point 0/0/26 4/13/9 0/20/6 4/12/10 1/21/4 0/0/26 5/12/9 1/20/5 15/98/95
Cluster Mean 12/4/10 5/5/16 0/17/9 12/4/10 1/18/7 12/4/10 7/4/15 2/17/7 51/73/84MdAE-based
Cluster Median 21/1/4 17/1/8 1/0/25 21/1/4 18/1/7 21/1/4 18/1/7 2/1/23 119/7/82

Silhouette-based
Closest Point 0/0/26 4/13/9 0/20/6 0/0/26 4/12/10 1/21/4 5/12/9 1/20/5 15/98/95
Cluster Mean 12/5/9 2/5/19 0/17/9 12/5/9 4/7/15 1/18/7 12/5/9 1/19/6 44/81/83
Cluster Median 20/1/5 16/2/8 2/2/22 20/1/5 17/2/7 1/2/23 20/1/5 19/1/6 115/12/81

of these two methods is statistically significant in only three
cases, one in favor of LHC-SE and two in favor of the Median
baseline.

These results show that LHC-SE outperforms RG and Mean
baselines in the majority of the cases, but emerges shoulder-
to-shoulder with Median baseline. This motivates checking
whether augmenting the feature set of LHC-SE increases its
accuracy (RQ2).

Answer to RQ1: LHC-SE easily outperforms Random
Guessing and Mean baselines, and performs similarly
to the Median baseline.

B. RQ2. Can additional features help improve estimation
accuracy of the clustering approach?

To answer this question, we compare the base LHC-SE
model from RQ1 to two other variants (i.e., LHCTC-SE which
incorporates issue type and components, and LHCTC+TFIDF -
SE which incorporates the aforementioned in addition to TF-
IDF scores for each issue).

Identifying the best strategies: Similar to RQ1, we first
identify which combination of cluster forming and estima-
tion strategies works best with each of the two additional
variants. The middle and last rows of Table II show the
win-loss-tie scores of the two variants (i.e., LHCTC-SE and

LHCTC+TFIDF -SE) for different k-selection and estimation
strategies, with respect to their Wilcoxon test results. We can
observe that the best combination for LHCTC-SE is the MAE-
based k-selection with Cluster Median estimation, achieving
the highest score (101 wins, 2 losses, and 105 ties). Whereas,
for LHCTC+TFIDF -SE the MdAE-based k-selection with
Cluster Median estimator scores highest.

Comparing LHC-SE variants: Using the strategy that
works the best for each variant, we compare the three LHC-
based variants (each with their best performing strategy) in
Table IV. As we can see, the three models score very close
to one another (they draw a tie in almost all the cases).
Specifically, LHC-SE and LHCTC-SE perform similarly (each
beats the other on two projects, and are tie on the others).
However, LHCTC-SE is better than LHCTC+TFIDF -SE in
more cases, and therefore it scores the highest number of wins
among the three. So, we select LHCTC-SE for the comparison
against existing SP estimation approaches (RQ3).

Answer to RQ2: Using type, component(s) and report
length of issues, in addition to their LDA topics, help
LHCTC-SE perform better.



TABLE III
RQ1 AND RQ3: MAE, MDAE AND SA VALUES ACHIEVED BY LHC-SE, LHCTC -SE, DEEP-SE, TF-IDF-SE, AND THE MEAN AND MEDIAN

BASELINES. THE BEST VALUES PER METHOD AND PER PROJECT ARE PRINTED IN BOLD FACE.

Project Method MAE MdAE SA Project Method MAE MdAE SA Project Method MAE MdAE SA

MESOS LHC-SE 1.34 1.00 34.38 CONFCLOUD LHC-SE 1.34 1.00 40.41 SERVER LHC-SE 0.85 1.00 59.47
LHCTC-SE 1.33 1.00 34.63 LHCTC-SE 1.37 1.00 39.04 LHCTC-SE 0.85 1.00 59.47
Deep-SE 1.34 1.12 34.07 Deep-SE 1.48 0.93 33.89 Deep-SE 0.89 0.71 57.60
TF-IDF-SE 1.34 1.00 34.38 TF-IDF-SE 1.33 1.00 40.86 TF-IDF-SE 0.93 1.00 55.88
Mean 1.37 1.08 32.72 Mean 1.49 1.23 33.65 Mean 1.56 1.86 25.99
Median 1.34 1.00 34.38 Median 1.33 1.00 40.87 Median 0.85 1.00 59.46

ALOY LHC-SE 1.84 2.00 26.57 CONFSERVER LHC-SE 0.96 1.00 49.64 MDL LHC-SE 6.31 7.00 57.30
LHCTC-SE 2.28 2.00 9.01 LHCTC-SE 0.96 1.00 49.64 LHCTC-SE 6.31 7.00 57.30
Deep-SE 1.51 1.28 39.67 Deep-SE 0.91 0.64 52.28 Deep-SE 3.55 2.77 76.00
TF-IDF-SE 1.44 2.00 42.53 TF-IDF-SE 0.96 1.00 49.64 TF-IDF-SE 6.31 7.00 57.30
Mean 2.23 2.17 10.84 Mean 1.35 1.45 29.17 Mean 14.54 15.23 1.58
Median 1.44 2.00 42.53 Median 0.96 1.00 49.64 Median 6.31 7.00 57.30

APSTUD LHC-SE 4.14 3.00 30.20 DNN LHC-SE 0.71 1.00 42.60 MULE LHC-SE 2.27 2.00 37.11
LHCTC-SE 3.99 3.00 32.81 LHCTC-SE 0.71 1.00 42.60 LHCTC-SE 2.60 3.00 28.16
Deep-SE 4.31 2.70 27.37 Deep-SE 0.72 0.69 41.69 Deep-SE 2.24 1.68 37.95
TF-IDF-SE 3.99 3.00 32.81 TF-IDF-SE 0.79 1.00 36.13 TF-IDF-SE 3.58 2.00 0.81
Mean 4.00 2.49 32.72 Mean 0.80 0.88 35.28 Mean 2.79 3.18 22.68
Median 3.99 3.00 32.81 Median 0.71 1.00 42.60 Median 2.24 2.00 38.05

CLI LHC-SE 1.87 2.00 29.32 FAB LHC-SE 0.67 1.00 69.75 NEXUS LHC-SE 1.14 1.00 22.52
LHCTC-SE 1.76 2.00 33.35 LHCTC-SE 0.65 1.00 70.47 LHCTC-SE 1.22 1.00 16.88
Deep-SE 1.76 1.30 33.44 Deep-SE 0.86 0.71 61.06 Deep-SE 1.08 0.88 26.56
TF-IDF-SE 2.98 3.00 -12.84 TF-IDF-SE 1.10 1.00 50.31 TF-IDF-SE 1.17 1.00 20.68
Mean 2.14 2.61 18.93 Mean 1.19 1.10 46.21 Mean 1.11 0.58 24.69
Median 1.77 2.00 33.04 Median 0.67 1.00 69.75 Median 1.17 1.00 20.68

DAEMON LHC-SE 2.81 3.00 32.09 STL LHC-SE 1.28 1.00 -6.77 XD LHC-SE 1.54 1.00 39.53
LHCTC-SE 2.74 3.00 33.81 LHCTC-SE 0.95 1.00 20.41 LHCTC-SE 1.50 1.00 40.85
Deep-SE 3.29 2.00 20.55 Deep-SE 1.18 1.12 1.91 Deep-SE 1.45 1.16 43.06
TF-IDF-SE 2.74 3.00 33.81 TF-IDF-SE 0.84 0.00 30.12 TF-IDF-SE 2.01 2.00 20.82
Mean 2.75 2.75 33.53 Mean 0.97 1.02 19.32 Mean 1.65 1.72 34.89
Median 2.74 3.00 33.81 Median 0.95 1.00 20.41 Median 1.55 1.00 39.05

TIDOC LHC-SE 2.79 1.00 23.48 DM LHC-SE 1.56 1.00 53.87 TDP LHC-SE 1.00 1.00 37.08
LHCTC-SE 3.65 2.00 -0.30 LHCTC-SE 1.52 1.00 54.94 LHCTC-SE 1.03 1.00 35.44
Deep-SE 2.72 1.19 25.35 Deep-SE 1.61 0.89 52.41 Deep-SE 0.99 0.81 37.69
TF-IDF-SE 3.03 1.00 16.69 TF-IDF-SE 1.49 1.00 55.71 TF-IDF-SE 0.99 1.00 37.74
Mean 2.99 2.59 18.00 Mean 2.60 2.43 22.83 Mean 1.17 1.38 26.26
Median 2.77 1.00 24.03 Median 1.61 1.00 52.19 Median 0.99 1.00 37.74

TIMOB LHC-SE 2.53 2.00 30.70 DURACLOUD LHC-SE 1.25 1.00 -9.65 TDQ LHC-SE 3.52 3.00 27.60
LHCTC-SE 2.48 2.00 32.12 LHCTC-SE 0.68 1.00 39.94 LHCTC-SE 2.92 3.00 40.01
Deep-SE 2.41 1.81 33.90 Deep-SE 0.68 0.58 39.90 Deep-SE 2.47 2.23 49.14
TF-IDF-SE 2.53 2.00 30.70 TF-IDF-SE 0.68 1.00 39.94 TF-IDF-SE 5.05 5.00 -3.95
Mean 2.55 1.81 30.23 Mean 0.67 0.85 41.13 Mean 4.20 3.82 13.65
Median 2.53 2.00 30.70 Median 0.68 1.00 39.94 Median 2.88 3.00 40.72

TISTUD LHC-SE 1.51 2.00 51.89 COMPASS LHC-SE 1.38 2.00 28.54 TESB LHC-SE 0.99 1.00 32.56
LHCTC-SE 1.51 2.00 51.89 LHCTC-SE 1.30 1.00 32.46 LHCTC-SE 1.04 1.00 29.31
Deep-SE 1.63 1.38 48.08 Deep-SE 1.63 1.34 15.25 Deep-SE 1.15 0.73 21.36
TF-IDF-SE 1.51 2.00 51.89 TF-IDF-SE 1.38 2.00 28.54 TF-IDF-SE 0.97 1.00 33.95
Mean 2.01 2.16 35.93 Mean 1.48 1.63 23.05 Mean 0.99 0.99 32.71
Median 1.51 2.00 51.89 Median 1.38 2.00 28.54 Median 0.98 1.00 33.02

CLOV LHC-SE 3.88 2.00 46.35 EVG LHC-SE 0.60 1.00 22.69
LHCTC-SE 4.23 1.50 41.55 LHCTC-SE 0.62 1.00 19.97
Deep-SE 3.78 1.05 47.73 Deep-SE 0.63 0.54 19.39
TF-IDF-SE 4.04 1.00 44.15 TF-IDF-SE 0.69 1.00 10.67
Mean 5.93 5.30 18.06 Mean 0.68 0.56 12.98
Median 4.01 2.00 44.55 Median 0.69 1.00 10.67

TABLE IV
RQ2: WIN-LOSS-TIE SUMMARY OF THE WILCOXON TEST RESULTS
COMPARING THE LHC-SE VARIANTS WITH THEIR RESPECTIVE BEST
STRATEGIES FROM TABLE II. THE BEST VARIANT IS HIGHLIGHTED.

Win/Loss/Tie

Method LHC-SE LHCTC-SE LHCTC+TFIDF -SE Sum

LHC-SE 2/2/22 1/2/23 3/4/45
LHCTC-SE 2/2/22 2/1/23 4/3/45
LHCTC+TFIDF -SE 2/1/23 1/2/23 3/3/46

C. RQ3. How does the clustering approach compare to the
existing SP estimation approaches?

Since LHCTC-SE was found to be the best performing
variant among the models investigated (see RQ2), we compare

it against the state-of-the-art.
Table III shows the MAE and SA values achieved by

LHCTC-SE, Deep-SE, TF-IDF-SE, and the Mean, Median,
and Random Guessing (RG) baselines (the MdAE values are
also reported, for completeness). We observe that LHCTC-SE
achieves a better (lower) MAE than Deep-SE in 14 out of
26 cases, while Deep-SE achieves a better MAE in 12 cases.
LHCTC-SE outperforms TF-IDF-SE in 15 cases, whereas it is
outperformed in the remaining 11 cases. LHCTC-SE achieves
better MAE values than those achieved by Mean and RG in
21 and 25 cases, respectively. It achieves better MAEs than
the Median estimator, in 14 cases, and slightly worse in 12.

It is worth noting that in some cases the MAE values are



very close (e.g., the MULE project in Table III), showing that
achieving a lower MAE does not guarantee that a method
performs statistically significantly better than the other. For
this reason, we also provide the p-values and effect sizes of
the statistical tests performed on LHCTC-SE against the other
methods per project in Table V and, then summarise these
results as win-loss-tie in Table VI.

Based on the results reported in Table V, we observe
that LHCTC-SE performs statistically significantly better than
Deep-SE for five projects (i.e., TISTUD, FAB, DM, COM-
PASS, and EVG), however, the effect size for all five cases is
negligible. Similarly, LHCTC-SE performs statistically signif-
icantly better than the Median estimator in two projects (i.e.,
DM and EVG), but the effect size for both cases is negligible.
Compared to TF-IDF-SE, LHCTC-SE showed statistically
significant improvement for five projects (i.e., CLI, FAB, EVG,
MULE, and TDQ), in two cases with a medium effect size,
in one case with a small one, and in the remaining two cases
with a negligible one. Against the Mean estimator, LHCTC-SE
shows a significant improvement. Particularly, from 19 projects
for which LHCTC-SE produces statistically significantly better
estimations, in four cases the difference shows a strong effect
size, in one case the effect size is medium, and for the
remaining 14 cases seven show medium and seven show
negligible effect sizes. Finally, compared to the RG baseline,
LHCTC-SE shows statistically significant difference for all
projects but one. Among the 25 projects which LHCTC-SE
outperforms RG, half (12 cases) show a strong effect size,
seven cases show a medium, three cases a small, and one case
a negligible effect size.

Based on the win-tie-loss summary (Table VI), we can
conclude that LHCTC-SE scores are very close to Deep-SE
and Median estimator, though it is ahead by two and one wins,
respectively. Considering the scores achieved by LHCTC-SE
against the other methods (see first row Table VI), we can also
observe that LHCTC-SE never wins less than it loses to the
other methods.

Overall, these results show that our proposed method out-
performs RG and Mean baselines statistically significantly,
and matches the accuracy of the state-of-the-art, while slightly
enhancing it in some cases, it does not perform worse in most
of the cases. It also performs as good as the Median estimator.

Answer to RQ3: LHCTC-SE matches the accuracy of
the state-of-the-art, while slightly enhancing it in some
cases, it does not perform worse in most of the cases.

VI. DISCUSSION

Our results show that LDA is able to capture information
latent in the issue-context to enable the clustering algorithm
to form useful clusters for story point estimation.

In RQ1, we analysed LHC-SE, which solely uses LDA-
generated posterior topic probabilities. This approach outper-
forms random guessing in all cases and the Mean baseline in

TABLE V
RQ3: WILCOXON TEST RESULTS (WITH VARGHA-DELANEY EFFECT SIZE

IN BRACKETS) COMPARING LHCTC -SE AGAINST EACH OF THE
PREVIOUS WORK AND THE BASELINE METHODS.

Project LHCTC-SE vs.

Deep-SE TF-IDF-SE Mean Median Random

MESOS 0.147 (0.52) 0.420 (0.50) 0.001 (0.57) 0.420 (0.50) <0.001 (0.73)
ALOY 0.992 (0.36) 0.999 (0.33) 0.435 (0.51) 0.999 (0.33) 0.167 (0.56)
APSTUD 0.186 (0.54) 0.501 (0.50) 0.370 (0.51) 0.501 (0.50) <0.001 (0.73)
CLI 0.736 (0.47) <0.001 (0.74) 0.030 (0.60) 0.466 (0.50) <0.001 (0.75)
DAEMON 0.344 (0.53) 0.502 (0.50) 0.629 (0.48) 0.502 (0.50) <0.001 (0.77)
TIDOC 0.826 (0.47) 0.869 (0.47) 0.002 (0.58) 0.873 (0.47) <0.001 (0.70)
TIMOB 0.563 (0.50) 0.121 (0.52) 0.048 (0.52) 0.121 (0.52) <0.001 (0.73)
TISTUD <0.001 (0.60) 0.500 (0.50) <0.001 (0.63) 0.500 (0.50) <0.001 (0.84)
CLOV 0.920 (0.43) 0.949 (0.42) <0.001 (0.75) 0.301 (0.53) <0.001 (0.81)
CONFCLOUD 0.497 (0.50) 0.552 (0.49) 0.036 (0.60) 0.552 (0.49) <0.001 (0.81)
CONFSERVER 0.132 (0.55) 0.501 (0.50) <0.001 (0.65) 0.501 (0.50) <0.001 (0.77)
DNN 0.630 (0.49) 0.386 (0.51) <0.001 (0.69) 0.500 (0.50) <0.001 (0.82)
FAB 0.003 (0.64) 0.002 (0.64) <0.001 (0.83) 0.435 (0.51) <0.001 (0.95)
STL 0.110 (0.58) 0.951 (0.41) 0.007 (0.65) 0.502 (0.50) 0.003 (0.67)
DM <0.001 (0.56) 1.000 (0.46) <0.001 (0.83) <0.001 (0.54) <0.001 (0.93)
DURACLOUD 0.052 (0.58) 0.501 (0.50) 0.181 (0.55) 0.501 (0.50) <0.001 (0.69)
COMPASS 0.043 (0.60) 0.403 (0.51) 0.112 (0.57) 0.403 (0.51) 0.004 (0.65)
EVG 0.034 (0.53) 0.008 (0.54) 0.045 (0.53) 0.008 (0.54) 0.015 (0.54)
SERVER 0.413 (0.51) 0.481 (0.50) <0.001 (0.80) 0.422 (0.51) <0.001 (0.91)
MDL 1.000 (0.17) 0.500 (0.50) <0.001 (1.00) 0.500 (0.50) <0.001 (1.00)
MULE 1.000 (0.41) <0.001 (0.57) <0.001 (0.59) 1.000 (0.41) <0.001 (0.77)
NEXUS 0.721 (0.49) 0.892 (0.47) 0.897 (0.47) 0.892 (0.47) <0.001 (0.59)
XD 0.626 (0.49) 0.056 (0.55) 0.005 (0.58) 0.774 (0.48) <0.001 (0.84)
TDP 0.613 (0.49) 0.564 (0.49) 0.016 (0.59) 0.564 (0.49) <0.001 (0.82)
TDQ 0.995 (0.42) <0.001 (0.79) <0.001 (0.67) 0.516 (0.50) <0.001 (0.84)
TESB 0.105 (0.54) 0.817 (0.47) 0.056 (0.55) 0.753 (0.48) <0.001 (0.67)

TABLE VI
RQ3: WIN-LOSS-TIE SUMMARY OF THE WILCOXON TEST RESULTS

COMPARING LHCTC -SE AGAINST EACH OF THE PREVIOUS WORK AND
THE BASELINE METHODS. THE BEST METHOD IS HIGHLIGHTED

Win/Loss/Tie

Method LHCTC-SE Deep-SE TFI/DF-SE Mean Median Random Summary

LHCTC-SE 5/4/17 5/3/18 19/0/7 2/2/22 25/0/1 56/9/65
Deep-SE 4/5/17 5/4/17 16/1/9 4/3/19 25/0/1 54/13/63
TF-IDF-SE 2/5/19 4/5/17 16/3/7 2/5/19 23/3/0 47/21/62
Mean 0/19/7 1/16/9 3/16/7 1/20/5 24/0/2 29/71/30
Median 2/2/22 3/4/19 5/3/18 20/1/5 25/1/0 55/11/64
Random 0/25/1 0/25/1 3/23/0 0/24/2 1/25/0 4/122/4

77% of the cases, based on the MAE values. However, the
Median baseline performs as good as LHC-SE. We should
note that the Median baseline is also performing better than
all other methods investigated in this study (see Table VI),
including the two previous work (TF-IDF-SE and Deep-SE)1,
though both are more sophisticated methods.

RQ2 results show that augmenting LDA-generated posterior
topic probabilities with extra features from issue reports help
the clustering algorithm to form a better clustering solution,
thus improving the estimation accuracy, though marginally
(see Table IV). In fact, the addition of TF-IDF weights to the
feature set (i.e., LHCTC+TFIDF -SE) showed improvements
over LHC-SE, however the accuracy of LHCTC+TFIDF -SE
was slightly lower than those achieved by LHCTC-SE. These
results suggest that adding more discriminating attributes to
the feature set can help the clustering algorithm form even
higher quality clusters.

1We also note that the Median baseline outperforms the state-of-the-art
approach (i.e., Deep-SE), which contradicts the results of the original study
[14]. This motivated us to carry out a close replication of their original study.
The results, which can be found elsewhere [44], confirm that Deep-SE is often
outperformed by both the Median and Mean baselines.



Finally, RQ3 results reveal that LHCTC-SE never performs
worse than the other benchmarks (e.g., the Median baseline
and Deep-SE). However, considering the level of complexity
of the model, time and resources consumed to build it, and
the interpretability of the models built, the Median estimator
can be viewed as the more favourable model so far that can
be used in practice.

We note that the fact that a naive estimation approach,
such as the Median one, provides comparable and in some
cases even better results than much more sophisticated tech-
niques like deep-learning and LDA, strongly indicates that
the research advances made so far are unsatisfactory. This
also suggests that future research on story point estimation
might need to pay more attention to the data rather than the
estimation technique when building prediction models [21]. In
fact, issue reports, especially in open-source projects, are not
usually written in a structured or formal way; thus, they can
be very noisy, and it is possible that by using tailored text
pre-processing and data cleaning the accuracy of the proposed
model can be improved. On the other hand, improving the
quality of the user stories written by the authors of the issue
report (for example by providing them with accurate guidelines
or training) could yield less noisy data for model building;
thus, improving the estimation accuracy. Besides, additional
features can be extracted in order to aid prediction models in
seeking more accurate estimations.

We believe that sharing these negative findings provides the
research community with the knowledge needed to develop
alternative strategies and evolve better solutions for story
points estimation.

VII. THREATS TO VALIDITY

Like previous studies, we use human-estimated story points
as the ground truth, which might be biased. On one hand,
this is mitigated by the clustering of similar issues, based on
their description, hence augmenting the estimations of several
human estimators. On the other hand, these values can be
viewed as a placeholder that is used to test the model’s ability
to estimate SP based on historical issues’ scores (wherever
their origin might be). The model therefore can be trained on
an unbiased target value, when it is available (for example,
the real time spent on issue development). Currently, given
the available dataset, our model can imitate human experts
assisting them in their estimation, at its best.

To minimize threats to conclusion validity, we carefully
selected unbiased accuracy performance measures and applied
statistical tests to rule out small differences.

The dataset we used represents a wide range of real-
world projects. However, we cannot claim that our dataset
is representative of all software projects. All our projects are
collected from open-source repositories, which can be different
from industrial projects in many aspects. A key difference,
that may affect the estimation of story points, is the behaviour
of contributors, developers, and project stakeholders. It is also
expected that in a commercial project setting issue reports may
be written in a more disciplined environment, thus, providing

more useful information and containing less noise. Therefore,
further investigation for commercial projects from industrial
software companies is needed to validate the conclusions made
in this study.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigate a novel clustering-based model
to estimate Story Point (SP), dubbed LHC-SE.

The idea behind LHC-SE is to leverage the similarity of
issues, measured using the similarity of LDA-generated topic
space of issue descriptions and agglomerative hierarchical
clustering, to estimate the SP of a new issue based on the past
most similar issues. This model works on the premise that
clustering similar data points together helps reduce variance,
and thus, increases the accuracy of any model built upon them.

To assess effectiveness of our proposal we have carried
out a thorough empirical study benchmarking LHC-SE’s per-
formance against those of both baselines and state-of-the-art
approaches for SP estimation on the largest corpus of open-
source projects used in the literature to date.

The results showed that the use of LHC-SE allows us to
achieve comparable results with the state-of-the-art (i.e., based
on the Wilcoxon test results, it is statistically significantly
better in 5 cases, worse in 4 and tie in the remaining 17
cases). On the other end, our results also surprisingly reveal
that both LHC-SE and the state-of-the-art are comparable to
some naive estimators such as simply assigning the median SP
of previous issues, therefore their additional complexity does
not seem warranted.

We hope that these negative findings encourage researchers
to develop alternative strategies and evolve better ideas for
story points estimation. In future work, we suggest investigat-
ing:

• More advanced data analysis and cleaning prior to model
building.

• Utilizing other contextual text representation models re-
cently introduced in NLP research, instead of LDA.

• Collecting and using additional effort-informative fea-
tures available in, or derivable from, issue reports.

• Training machine learning methods on each cluster in-
stead of baseline estimators used in this study.

• Exploring other distance measures for clustering instead
of cosine similarity; and/or other clustering techniques
instead of agglomerative hierarchical clustering.

OPEN SCIENCE

We made the data and scripts used in this study publicly
available in order to facilitate the reproduction and extension
of our work [51], [52].
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